Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34833728

RESUMO

Seismic instrumentation for earthquake early warnings (EEWs) has improved significantly in the last few years, considering the station coverage, data quality, and the related applications. The official EEW system in Taiwan is operated by the Central Weather Bureau (CWB) and is responsible for issuing the regional warning for moderate-to-large earthquakes occurring in and around Taiwan. The low-cost micro-electro-mechanical system (MEMS)-based P-Alert EEW system is operational in Taiwan for on-site warnings and for producing shakemaps. Since 2010, this P-Alert system, installed by the National Taiwan University (NTU), has shown its importance during various earthquakes that caused damage in Taiwan. Although the system is capable of acting as a regional as well as an on-site warning system, it is particularly useful for on-site warning. Using real-time seismic signals, each P-Alert system can provide a 2-8 s-long warning time for the locations situated in the blind zone of the CWB regional warning system. The shakemaps plotted using this instrumentation help to assess the damage pattern and rupture directivity, a key feature in the risk mitigation process. These shakemaps are delivered to the intended users, including the disaster mitigation authorities, for possible relief purposes. Earlier, the network provided only peak ground acceleration (PGA) shakemaps, but has now been updated to include peak ground velocity (PGV), spectral acceleration (Sa) at different periods, and CWB intensity maps. The PGA and PGV shakemaps plotted using this network have proven helpful in establishing the fact that PGV is a better indicator of damage detection than PGA. This instrumentation is also useful in structural health-monitoring and estimating co-seismic deformations. Encouraged by the performance of the P-Alert network, more instruments are installed in Asia-Pacific countries.


Assuntos
Desastres , Terremotos , Aceleração , Ásia , Humanos , Taiwan
2.
Sci Adv ; 7(16)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33853784

RESUMO

Delineation of physical factors that contribute to earthquake triggering is a challenging issue in seismology. We analyze hydrological modulation of seismicity in Taiwan using groundwater level data and GNSS time series. In western Taiwan, the seismicity rate reaches peak levels in February to April and drops to its lowest values in July to September, exhibiting a direct correlation with annual water unloading. The elastic hydrological load cycle may be the primary driving mechanism for the observed synchronized modulation of earthquakes, as also evidenced by deep earthquakes in eastern Taiwan. However, shallow earthquakes in eastern Taiwan (<18 km) are anticorrelated with water unloading, which is not well explained by either hydrological loading, fluid transport, or pore pressure changes and suggests other time-dependent processes. The moderate correlation between stacked monthly trends of large historic earthquakes and present-day seismicity implies a modestly higher seismic hazard during the time of low annual hydrological loading.

3.
Sensors (Basel) ; 21(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572606

RESUMO

Using low-cost sensors to build a seismic network for earthquake early warning (EEW) and to generate shakemaps is a cost-effective way in the field of seismology. National Taiwan University (NTU) network employing 748 P-Alert sensors based on micro-electro-mechanical systems (MEMS) technology is operational for almost the last 10 years. This instrumentation is capable of recording the strong ground motions of up to ± 2g and is dense enough to record the near-field ground motion. It has proven effective in generating EEW warnings and delivering real-time shakemaps to the concerned disaster relief agencies to mitigate the earthquake-affected regions. Before 2020, this instrumentation was used to plot peak ground acceleration (PGA) shakemaps only; however, recently it has been upgraded to generate the peak ground velocity (PGV), Central Weather Bureau (CWB) Intensity scale, and spectral acceleration (Sa) shakemaps at different periods as value-added products. After upgradation, the performance of the network was observed using the latest recorded earthquakes in the country. The experimental results in the present work demonstrate that the new parameters shakemaps added in the current work provide promising outputs, and are comparable with the shakemaps given by the official agency CWB. These shakemaps are helpful to delineate the earthquake-hit regions which in turn is required to assist the needy well in time to mitigate the seismic risk.

4.
Sensors (Basel) ; 18(5)2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29734736

RESUMO

The earthquake early warning (EEW)-research group at National Taiwan University has been developing a microelectromechanical system-based accelerometer called “P-Alert”, designed for issuing EEWs. The main advantage of P-Alert is that it is a relatively economical seismometer. However, because of the expensive nature of commercial hardware for structural health monitoring (SHM) systems, the application of SHM to buildings remains limited. To determine the performance of P-Alert for evaluating post-earthquake building safety, we conducted a series of steel-frame shaking table tests with incremental damage. We used the fragility curves of different damage levels and the interstory drift ratios (calculated by the measured acceleration of each story using double integration and a filter) to gauge the potential damage levels. We concluded that the acceptable detection of damage for an entire building is possible. With improvements to the synchronization of the P-Alert sensors, we also anticipate a damage localization feature for the stories of a building.

5.
Sensors (Basel) ; 17(11)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144409

RESUMO

Following the recent establishment of a high-density seismic network equipped with low-cost micro-electro-mechanical system (MEMS) P-wave-alert-device (P-Alert) by the earthquake early warning (EEW) research group at the National Taiwan University, a large quantity of strong-motion records from moderate-magnitude earthquakes (ML > 6) around Taiwan has been accumulated. Using a data preprocessing scheme to recover the dynamic average embedded within the P-Alert data, we adopted an automatic baseline correction approach for the P-Alert accelerograms to determine the coseismic deformation (Cd). Comparisons between the Cd values determined using global positioning system (GPS) data, strong-motion records from the P-Alert network, and data from the Taiwan Strong Motion Instrumentation Program (TSMIP) demonstrates that the near-real-time determination of Cd values (>2 cm), which provide crucial information for seismic hazard mitigation, is possible using records from low-cost MEMS accelerometers.

6.
Sci Rep ; 7: 43510, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252039

RESUMO

Hazards from gravity-driven instabilities on hillslope (termed 'landquake' in this study) are an important problem facing us today. Rapid detection of landquake events is crucial for hazard mitigation and emergency response. Based on the real-time broadband data in Taiwan, we have developed a near real-time landquake monitoring system, which is a fully automatic process based on waveform inversion that yields source information (e.g., location and mechanism) and identifies the landquake source by examining waveform fitness for different types of source mechanisms. This system has been successfully tested offline using seismic records during the passage of the 2009 Typhoon Morakot in Taiwan and has been in online operation during the typhoon season in 2015. In practice, certain levels of station coverage (station gap < 180°), signal-to-noise ratio (SNR ≥ 5.0), and a threshold of event size (volume >106 m3 and area > 0.20 km2) are required to ensure good performance (fitness > 0.6 for successful source identification) of the system, which can be readily implemented in other places in the world with real-time seismic networks and high landquake activities.

7.
Sci Rep ; 6: 19259, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26753931

RESUMO

Flooding resulting from the bursting of dams formed by landquake events such as rock avalanches, landslides and debris flows can lead to serious bank erosion and inundation of populated areas near rivers. Seismic waves can be generated by landquake events which can be described as time-dependent forces (unloading/reloading cycles) acting on the Earth. In this study, we conduct inversions of long-period (LP, period ≥20 s) waveforms for the landquake force histories (LFHs) of ten events, which provide quantitative characterization of the initiation, propagation and termination stages of the slope failures. When the results obtained from LP waveforms are analyzed together with high-frequency (HF, 1-3 Hz) seismic signals, we find a relatively strong late-arriving seismic phase (dubbed Dam-forming phase or D-phase) recorded clearly in the HF waveforms at the closest stations, which potentially marks the time when the collapsed masses sliding into river and perhaps even impacting the topographic barrier on the opposite bank. Consequently, our approach to analyzing the LP and HF waveforms developed in this study has a high potential for identifying five dam-forming landquake events (DFLEs) in near real-time using broadband seismic records, which can provide timely warnings of the impending floods to downstream residents.

8.
Sci Rep ; 5: 8261, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652082

RESUMO

Continuous seismic records near river channels can be used to quantify the energy induced by river sediment transport. During the 2011 typhoon season, we deployed a seismic array along the Chishan River in the mountain area of southern Taiwan, where there is strong variability in water discharge and high sedimentation rates. We observe hysteresis in the high-frequency (5-15 Hz) seismic noise level relative to the associated hydrological parameters. In addition, our seismic noise analysis reveals an asymmetry and a high coherence in noise cross-correlation functions for several station pairs during the typhoon passage, which corresponds to sediment particles and turbulent flows impacting along the riverbed where the river bends sharply. Based on spectral characteristics of the seismic records, we also detected 20 landslide/debris flow events, which we use to estimate the sediment supply. Comparison of sediment flux between seismologically determined bedload and derived suspended load indicates temporal changes in the sediment flux ratio, which imply a complex transition process from the bedload regime to the suspension regime between typhoon passage and off-typhoon periods. Our study demonstrates the possibility of seismologically monitoring river bedload transport, thus providing valuable additional information for studying fluvial bedrock erosion and mountain landscape evolution.

9.
Sensors (Basel) ; 8(1): 1-9, 2008 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27879692

RESUMO

As urbanization progresses worldwide, earthquakes pose serious threat to livesand properties for urban areas near major active faults on land or subduction zonesoffshore. Earthquake Early Warning (EEW) can be a useful tool for reducing earthquakehazards, if the spatial relation between cities and earthquake sources is favorable for suchwarning and their citizens are properly trained to respond to earthquake warning messages.An EEW system forewarns an urban area of forthcoming strong shaking, normally with afew sec to a few tens of sec of warning time, i.e., before the arrival of the destructive Swavepart of the strong ground motion. Even a few second of advanced warning time willbe useful for pre-programmed emergency measures for various critical facilities, such asrapid-transit vehicles and high-speed trains to avoid potential derailment; it will be alsouseful for orderly shutoff of gas pipelines to minimize fire hazards, controlled shutdown ofhigh-technological manufacturing operations to reduce potential losses, and safe-guardingof computer facilities to avoid loss of vital databases. We explored a practical approach toEEW with the use of a ground-motion period parameter τc and a high-pass filtered verticaldisplacement amplitude parameter Pd from the initial 3 sec of the P waveforms. At a givensite, an earthquake magnitude could be determined from τc and the peak ground-motionvelocity (PGV) could be estimated from Pd. In this method, incoming strong motion acceleration signals are recursively converted to ground velocity and displacement. A Pwavetrigger is constantly monitored. When a trigger occurs, τc and Pd are computed. Theearthquake magnitude and the on-site ground-motion intensity could be estimated and thewarning could be issued. In an ideal situation, such warnings would be available within 10sec of the origin time of a large earthquake whose subsequent ground motion may last fortens of seconds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA