Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Biol Sci ; 20(6): 2219-2235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617542

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the common causes of chronic liver disease in the world. The problem of NAFLD had become increasingly prominent. However, its pathogenesis is still indistinct. As we all know, NAFLD begins with the accumulation of triglyceride (TG), leading to fatty degeneration, inflammation and other liver tissues damage. Notably, structure of nucleoporin 85 (NUP85) is related to lipid metabolism and inflammation of liver diseases. In this study, the results of researches indicated that NUP85 played a critical role in NAFLD. Firstly, the expression level of NUP85 in methionine-choline-deficient (MCD)-induced mice increased distinctly, as well as the levels of fat disorder and inflammation. On the contrary, knockdown of NUP85 had the opposite effects. In vitro, AML-12 cells were stimulated with 2 mm free fatty acids (FFA) for 24 h. Results also proved that NUP85 significantly increased in model group, and increased lipid accumulation and inflammation level. Besides, NUP85 protein could interact with C-C motif chemokine receptor 2 (CCR2). Furthermore, when NUP85 protein expressed at an extremely low level, the expression level of CCR2 protein also decreased, accompanied with an inhibition of phosphorylation of phosphoinositol-3 kinase (PI3K)-protein kinase B (AKT) signaling pathway. What is more, trans isomer (ISRIB), a targeted inhibitor of NUP85, could alleviate NAFLD. In summary, our findings suggested that NUP85 functions as an important regulator in NAFLD through modulation of CCR2.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Metabolismo dos Lipídeos/genética , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Receptores de Quimiocinas , Inflamação
2.
J Pharmacol Exp Ther ; 389(2): 163-173, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453527

RESUMO

Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.


Assuntos
Aldeído Oxirredutases , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética
3.
Expert Opin Ther Targets ; 27(2): 121-132, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36803246

RESUMO

INTRODUCTION: Phosphodiesterase 4B (PDE4B) is a crucial enzyme in the phosphodiesterases (PDEs), acting as a regulator of cyclic adenosine monophosphate (cAMP). It is involved in cancer process through PDE4B/cAMP signaling pathway. Cancer occurs and develops with the regulation of PDE4B in the body, suggesting that PDE4B is a promising therapeutic target. AREAS COVERED: This review covereed the function and mechanism of PDE4B in cancer. We summarized the possible clinical applications of PDE4B, and highlighted the possible ways to develop clinical applications of PDE4B inhibitors. We also discussed some common PDEs inhibitors, and expected the development of combined targeting PDE4B and other PDEs drugs in the future. EXPERT OPINION: The existing research and clinical data can strongly prove the role of PDE4B in cancer. PDE4B inhibition can effectively increase cell apoptosis, inhibit cell proliferation, transformation, migration, etc., indicating that PDE4B inhibition can effectively inhibit the development of cancer. Other PDEs may antagonize or coordinate this effect. As for the further study on the relationship between PDE4B and other PDEs in cancer, it is still a challenge to develop multi-targeted PDEs inhibitors.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Neoplasias , Humanos , Apoptose , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/farmacologia , Neoplasias/tratamento farmacológico , Transdução de Sinais
4.
FASEB J ; 37(1): e22716, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527390

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major health problem in Western countries and has become the most common cause of chronic liver disease. Although NAFLD is closely associated with obesity, inflammation, and insulin resistance, its pathogenesis remains unclear. The disease begins with excessive accumulation of triglycerides in the liver, which in turn leads to liver cell damage, steatosis, inflammation, and so on. P38γ is one of the four isoforms of P38 mitogen-activated protein kinases (P38 MAPKs) that contributes to inflammation in different diseases. In this research, we investigated the role of P38γ in NAFLD. In vivo, a NAFLD model was established by feeding C57BL/6J mice with a methionine- and choline-deficient (MCD) diet and adeno-associated virus (AAV9-shRNA-P38γ) was injected into C57BL/6J mice by tail vein for knockdown P38γ. The results indicated that the expression level of P38γ was upregulated in MCD-fed mice. Furthermore, the downregulation of P38γ significantly attenuated liver injury and lipid accumulation in mice. In vitro, mouse hepatocytes AML-12 were treated with free fatty acid (FFA). We found that P38γ was obviously increased in FFA-treated AML-12 cells, whereas knockdown of P38γ significantly suppressed lipid accumulation in FFA-treated AML-12 cells. Furthermore, P38γ regulated the Janus Kinase-Signal transducers and activators of transcription (JAK-STAT) signaling pathway. Inhibition of P38γ can inhibit the JAK-STAT signaling pathway, thereby inhibiting lipid accumulation in FFA-treated AML-12 cells. In conclusion, our results suggest that targeting P38γ contributes to the suppression of lipid accumulation in fatty liver disease.


Assuntos
Leucemia Mieloide Aguda , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Janus Quinases/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Transdução de Sinais , Ácidos Graxos não Esterificados/metabolismo , Inflamação/metabolismo , Metionina/farmacologia , Metionina/metabolismo , Leucemia Mieloide Aguda/metabolismo
5.
Eur J Pharmacol ; 938: 175410, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36511324

RESUMO

Hepatocellular carcinoma (HCC) is often diagnosed at advanced stages with no effective treatment options. Mechanistically, it is a complex biological process. Recently, the main cause of its incidence is changing from viral to non-viral. It has been shown that high cholesterol levels can cause the further transformation of non-alcoholic fatty liver disease (NAFLD) to HCC, but some investigations have found that serum cholesterol levels are negatively correlated with morbidity and mortality. Conflicting experimental results and epidemiological investigations illustrate the complex mechanisms of HCC. Cholesterol is essential for the survival of the body and tumors, although research on the function of cholesterol in tumors is evolving, the use of lowering cholesterol drugs in treating HCC remains limited. In this review, the cholesterol-involved mechanisms that cause the development of HCC or reduce the mortality and the latest progress in the use of cholesterol in the treatment of HCC and prospects for prevention and diagnosis have been summarized.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Incidência , Colesterol
6.
Cell Signal ; 102: 110550, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464104

RESUMO

Common liver tissue damage is mainly due to the accumulation of toxic aldehydes in lipid peroxidation under oxidative stress. Cumulative toxic aldehydes in the liver can be effectively metabolized by acetaldehyde dehydrogenase 2 (ALDH2), thereby alleviating various liver diseases. Notably, gene mutation of ALDH2 leads to impaired ALDH2 enzyme activity, thus aggravating the progress of liver diseases. However, the relationship and specific mechanism between ALDH2 and liver diseases are not clear. Consequently, the review explains the relationship between ALDH2 and liver diseases such as alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). In addition, this review also discusses ALDH2 as a potential therapeutic target for various liver diseases,and focuses on summarizing the regulatory mechanism of ALDH2 in these liver diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Aldeído Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial/genética , Neoplasias Hepáticas/genética , Aldeídos
7.
Autoimmun Rev ; 21(9): 103155, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35902046

RESUMO

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, as vital component of innate immune system, acts a vital role in distinguishing invasive pathogens and cytosolic DNA. Cytosolic DNA sensor cGAS first binds to cytosolic DNA and catalyzes synthesis of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which is known as the second messenger. Next, cGAMP activates the adaptor protein STING, triggering a molecular chain reaction to stimulate cytokines including interferons (IFNs). Recently, many researches have revealed that the regulatory role of cGAS-STING signaling pathway in autoimmune diseases (AIDs) such as Rheumatoid arthritis (RA), Aicardi Goutières syndrome (AGS) and systemic lupus erythematosus (SLE). Moreover, accumulated evidence have showed inhibition of the cGAS-STING signaling pathway could remarkably suppress the joint swelling and inflammatory cell infiltration in RA mice. Therefore, in this review, we describe the molecular properties, biologic function and mechanisms of the cGAS-STING signaling pathway in AIDs. In addition, potential clinical applications especially selective small molecule inhibitors targeting the cGAS-STING signaling pathway are also discussed.


Assuntos
Síndrome da Imunodeficiência Adquirida , Doenças Autoimunes , Produtos Biológicos , Animais , DNA , Humanos , Interferons , Proteínas de Membrana/genética , Camundongos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
8.
Acta Pharmacol Sin ; 43(7): 1733-1748, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34789918

RESUMO

Acetaminophen (APAP) is one of the major causes of drug-induced acute liver injury, and ethanol may aggravate APAP-induced liver injury. The problem of ethanol- and APAP-induced liver injury becomes increasingly prominent, but the mechanism of ethanol- and APAP-induced liver injury remains ambiguous. p38γ is one of the four isoforms of P38 mitogen activated protein kinases, that contributes to inflammation in different diseases. In this study we investigated the role of p38γ in ethanol- and APAP-induced liver injury. Liver injury was induced in male C57BL/6 J mice by giving liquid diet containing 5% ethanol (v/v) for 10 days, followed by gavage of ethanol (25% (v/v), 6 g/kg) once or injecting APAP (200 mg/kg, ip), or combined the both treatments. We showed that ethanol significantly aggravated APAP-induced liver injury in C57BL/6 J mice. Moreover, the expression level of p38γ was up-regulated in the liver of ethanol-, APAP- and ethanol+APAP-treated mice. Knockdown of p38γ markedly attenuated liver injury, inflammation, and steatosis in ethanol+APAP-treated mice. Liver sections of p38γ-knockdown mice displayed lower levels of Oil Red O stained dots and small leaky shapes. AML-12 cells were exposed to APAP (5 mM), ethanol (100 mM) or combined treatments. We showed that P38γ was markedly increased in ethanol+APAP-treated AML-12 cells, whereas knockdown of p38γ significantly inhibited inflammation, lipid accumulation and oxidative stress in ethanol+APAP-treated AML-12 cells. Furthermore, we revealed that p38γ could combine with Dlg1, a member of membrane-associated guanylate kinase family. Deletion of p38γ up-regulated the expression level of Dlg1 in ethanol+APAP-treated AML-12 cells. In summary, our results suggest that p38γ functions as an important regulator in ethanol- and APAP-induced liver injury through modulation of Dlg1.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Leucemia Mieloide Aguda , Acetaminofen/efeitos adversos , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/toxicidade , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...