Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35205713

RESUMO

Bladder cancer progression and metastasis have become major threats in clinical practice, increasing mortality and therapeutic refractoriness; recently, epigenetic dysregulation of epithelial-to-mesenchymal transition (EMT)-related signaling pathways has been explored. However, research in the fields of long noncoding RNA (lncRNA) and competing endogenous RNA (ceRNA) regulation in bladder cancer progression is just beginning. This study was designed to determine potential EMT-related ceRNA regulation in bladder cancer progression and elucidate the underlying mechanisms that provoke aggressiveness. After screening the intersection of bioinformatic pipelines, LINC02470 was identified as the most upregulated lncRNA during bladder cancer initiation and progression. Both in vitro and in vivo biological effects indicated that LINC02470 promotes bladder cancer cell viability, migration, invasion, and tumorigenicity. On a molecular level, miR-143-3p directly targets and reduces both LINC02470 and SMAD3 RNA expression. Therefore, the LINC02470-miR-143-3p-SMAD3 ceRNA axis rescues SMAD3 translation upon LINC02470 sponging miR-143-3p, and SMAD3 consequently activates the TGF-ß-induced EMT process. In conclusion, this is the first study to demonstrate that LINC02470 plays a pivotally regulatory role in the promotion of TGF-ß-induced EMT through the miR-143-3p/SMAD3 axis, thereby aggravating bladder cancer progression. Our study warrants further investigation of LINC02470 as an indicatively prognostic marker of bladder cancer.

2.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922395

RESUMO

Gemcitabine (GCB) resistance is a major issue in bladder cancer chemoresistance, but its underlying mechanism has not been determined. Epithelial-mesenchymal transition (EMT) has been shown to be comprehensively involved in GCB resistance in several other cancer types, but the direct connection between EMT and GCB remains unclear. This study was designed to elucidate the mechanism of EMT-related GCB resistance in bladder cancer and identify a potential phytochemical to modulate drug sensitivity. The biological effects of ellagic acid (EA) or its combined effects with GCB were compared in GCB-resistant cells and the GCB-sensitive line in terms of cell viability, apoptosis, motility, and in vivo tumorigenicity. The molecular regulation of EMT-related GCB resistance was evaluated at both the mRNA and protein expression levels. Our results indicated that TGF-ß/Smad induced the overactivation of EMT in GCB-resistant cells and reduced the expression of GCB influx transporters (hCNT1 and hENT1). Moreover, ellagic acid (EA) inhibited the TGF-ß signaling pathway both in vitro and in vivo by reducing Smad2, Smad3, and Smad4 expression and thereby resensitized GCB sensitivity. In conclusion, our results demonstrate that TGF-ß/Smad-induced EMT contributes to GCB resistance in bladder cancer by reducing GCB influx and also elucidate the novel mechanisms of EA-mediated inhibition of TGF-ß/Smad-induced EMT to overcome GCB resistance. Our study warrants further investigation of EA as an effective therapeutic adjuvant agent for overcoming GCB resistance in bladder cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...