Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 4644, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157128

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 10(1): 1150, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980675

RESUMO

Insects of the family Orthoptera: Acrididae including grasshoppers and locust devastate crops and eco-systems around the globe. The effective control of these insects requires large numbers of trained extension agents who try to spot concentrations of the insects on the ground so that they can be destroyed before they take flight. This is a challenging and difficult task. No automatic detection system is yet available to increase scouting productivity, data scale and fidelity. Here we demonstrate MAESTRO, a novel grasshopper detection framework that deploys deep learning within RBG images to detect insects. MAESTRO uses a state-of-the-art two-stage training deep learning approach. The framework can be deployed not only on desktop computers but also on edge devices without internet connection such as smartphones. MAESTRO can gather data using cloud storge for further research and in-depth analysis. In addition, we provide a challenging new open dataset (GHCID) of highly variable grasshopper populations imaged in Inner Mongolia. The detection performance of the stationary method and the mobile App are 78 and 49 percent respectively; the stationary method requires around 1000 ms to analyze a single image, whereas the mobile app uses only around 400 ms per image. The algorithms are purely data-driven and can be used for other detection tasks in agriculture (e.g. plant disease detection) and beyond. This system can play a crucial role in the collection and analysis of data to enable more effective control of this critical global pest.


Assuntos
Proteção de Cultivos/métodos , Agregação de Dados , Gafanhotos , Aplicativos Móveis , Controle de Pragas/métodos , Algoritmos , Distribuição Animal , Animais , China , Sistemas Computacionais , Aprendizado Profundo , Gafanhotos/fisiologia , Microcomputadores , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...