Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chall ; 5(11): 2100039, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34754507

RESUMO

Diagnostic testing that facilitates containment, surveillance, and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or future respiratory viruses, depends on a sample collection device that efficiently collects nasopharyngeal tissue and that can be manufactured on site when an outbreak or public health emergency is declared by a government. Here two novel stereolithography-based three-dimensional (3D)-printed nasopharyngeal swabs are reported which are made using a biocompatible and sterilizable photoresist. Such swabs are readily manufactured on-site and on-demand to ensure availability, if supply chain shortages emerge. Additionally, the 3D-printed swabs easily adapt to current workflow and testing procedures in hospital clinical laboratories to allow for effortless scaling up of test kits. Finally, the 3D-printed nasopharyngeal swabs demonstrate concordant SARS-CoV-2 testing results between the 3D-printed swabs and the COPAN commercial swabs, and enable detection of SARS-CoV-2 in clinical samples obtained from autopsies.

2.
JOR Spine ; 4(3): e1170, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34611592

RESUMO

BACKGROUND: Although deformation and fracture of the vertebral endplate have been implicated in spinal conditions such as vertebral fracture and disc degeneration, few biomechanical studies of this structure are available. The goal of this study was to quantify the mechanical behavior of the vertebral endplate. METHODS: Eight-five rectangular specimens were dissected from the superior and/or inferior central endplates of human lumbar spine segments L1 to L4. Micro-computed tomography (µCT) imaging, four-point-bend testing, and ashing were performed to quantify the apparent elastic modulus and yield stress (modulus and yield stress, respectively, of the porous vertebral endplate), tissue yield stress (yield stress of the tissue of the vertebral endplate, excluding pores), ultimate strain, fracture strain, bone volume fraction (BV/TV), bone mineral density (BMD), and various measures of tissue density and composition (tissue mineral density, ash fraction, and ash density). Regression was used to assess the dependence of mechanical properties on density and composition. RESULTS: Wide variations in elastic and failure properties, and in density and tissue composition, were observed. BMD and BV/TV were good predictors of many of the apparent-level mechanical properties, including modulus, yield stress, and in the case of the inferior vertebral endplate, failure strains. Similar values of the mechanical properties were noted between superior and inferior vertebral endplates. In contrast to the dependence of apparent stiffness and strength on BMD and BV/TV, none of the mechanical properties depended on any of the tissue-level density measurements. CONCLUSION: The dependence of many of the mechanical properties of the vertebral endplate on BV/TV and BMD suggests possibilities for noninvasive assessment of how this region of the spine behaves during habitual and injurious loading. Further study of the nonmineral components of the endplate tissue is required to understand how the composition of this tissue may influence the overall mechanical behavior of the vertebral endplate.

3.
Curr Osteoporos Rep ; 18(6): 716-726, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33215364

RESUMO

PURPOSE OF REVIEW: We aimed to synthesize the recent work on the intra-vertebral heterogeneity in density, trabecular architecture and mechanical properties, its implications for fracture risk, its association with degeneration of the intervertebral discs, and its implications for implant design. RECENT FINDINGS: As compared to the peripheral regions of the centrum, the central region of the vertebral body exhibits lower density and more sparse microstructure. As compared to the anterior region, the posterior region shows higher density. These variations are more pronounced in vertebrae from older persons and in those adjacent to degenerated discs. Mixed results have been reported in regard to variation along the superior-inferior axis and to relationships between the heterogeneity in density and vertebral strength and fracture risk. These discrepancies highlight that, first, despite the large amount of study of the intra-vertebral heterogeneity in microstructure, direct study of that in mechanical properties has lagged, and second, more measurements of vertebral loading are needed to understand how the heterogeneity affects distributions of stress and strain in the vertebra. These future areas of study are relevant not only to the question of spine fractures but also to the design and selection of implants for spine fusion and disc replacement. The intra-vertebral heterogeneity in microstructure and mechanical properties may be a product of mechanical adaptation as well as a key determinant of the ability of the vertebral body to withstand a given type of loading.


Assuntos
Corpo Vertebral/anatomia & histologia , Corpo Vertebral/fisiologia , Adaptação Fisiológica , Fenômenos Biomecânicos , Densidade Óssea , Humanos , Porosidade , Fraturas da Coluna Vertebral/fisiopatologia , Fraturas da Coluna Vertebral/cirurgia , Estresse Mecânico , Suporte de Carga
4.
Biomech Model Mechanobiol ; 19(2): 505-517, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31506861

RESUMO

Quantitative computed tomography (QCT)-based finite element (FE) models of the vertebra are widely used in studying spine biomechanics and mechanobiology, but their accuracy has not been fully established. Although the models typically assign material properties based only on local bone mineral density (BMD), the mechanical behavior of trabecular bone also depends on fabric. The goal of this study was to determine the effect of incorporating measurements of fabric on the accuracy of FE predictions of vertebral deformation. Accuracy was assessed by using displacement fields measured via digital volume correlation-applied to time-lapse microcomputed tomography (µCT)-as the gold standard. Two QCT-based FE models were generated from human L1 vertebrae (n = 11): the entire vertebral body and a cuboid-shaped portion of the trabecular centrum [dimensions: (20-30) × (15-20) × (15-20) mm3]. For axial compression boundary conditions, there was no difference (p = 0.40) in the accuracy of the FE-computed displacements for models using material properties based on local values of BMD versus those using material properties based on local values of fabric and volume fraction. However, when using BMD-based material properties, errors were higher for the vertebral-body models (8.4-50.1%) than cuboid models (1.5-19.6%), suggesting that these properties are inaccurate in the peripheral regions of the centrum. Errors also increased when assuming that the cuboid region experienced uniaxial loading during axial compression of the vertebra. These findings indicate that a BMD-based constitutive model is not sufficient for the peripheral region of the vertebral body when seeking accurate QCT-based FE modeling of the vertebra.


Assuntos
Análise de Elementos Finitos , Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Fenômenos Biomecânicos , Densidade Óssea , Simulação por Computador , Módulo de Elasticidade , Feminino , Humanos , Masculino , Modelos Biológicos
5.
Nanoscale ; 7(1): 121-32, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25407508

RESUMO

Self-assembly of cyclic peptide nanotubes (CPNs) in polymer thin films has opened up the possibility of creating separation membranes with tunable nanopores that can differentiate molecules at the sub-nanometer level. While it has been demonstrated that the interior chemistry of the CPNs can be tailored by inserting functional groups in the nanopore lumen (mCPNs), a design strategy for picking the chemical modifications that lead to particular transport properties has not been established. Drawing from the knowledgebase of functional groups in natural amino acids, here we use molecular dynamics simulations to elucidate how bioinspired mutations influence the transport of water through mCPNs. We show that, at the nanoscale, factors besides the pore size, such as electrostatic interactions and steric effects, can dramatically change the transport properties. We recognize a novel asymmetric structure of water under nanoconfinement inside the chemically functionalized nanotubes and identify that the small non-polar glycine-mimic groups that minimize the steric constraints and confer a hydrophobic character to the nanotube interior are the fastest transporters of water. Our computationally developed experiments on a realistic material system circumvent synthetic challenges, and lay the foundation for bioinspired principles to tailor artificial nanochannels for separation applications such as desalination, ion-exchange and carbon capture.


Assuntos
Materiais Biomiméticos/síntese química , Modelos Químicos , Nanoporos/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Água/química , Adsorção , Simulação por Computador , Difusão , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Modelos Moleculares , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...