Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Zhonghua Nan Ke Xue ; 29(3): 210-217, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38597701

RESUMO

OBJECTIVE: To explore the effects of lutein on the adhesion, invasiveness and metastasis of human prostate cancer PC-3M cells and its action mechanism. METHODS: We divided human prostate cancer PC-3M cells into a control, a low-dose lutein, a medium-dose lutein and a high-dose lutein group, and treated them with 0, 10, 20 and 40 µmol/L lutein, respectively. Then we examined the adhesion of the cells to matrix by cell adhesion assay and the changes in cell pseudopodia by Phalloidin staining, detected the expressions of paxillin, matrix metalloproteinase 2 (MMP-2), MMP-9, recombinant tissue inhibitors of metalloproteinase 1 (TIMP-1), E-cadherin, N-cadherin and vimentin by Western blot, determined the invasiveness and migration of the cells by scratch and Transwell assays, and observed their dynamic movement by high-intension imaging. RESULTS: Compared with the control, the lutein intervention groups showed significant reduction in the number of the cells adhered to matrix, the number of cell pseudopodia, the expressions of paxillin, MMP-2, MMP-9, N-cadherin and vimentin, the rates of migration, invasion and metastasis, and the distances of displacement and movement of the cells. However, the expressions of TIMP-1 and epithelial-mesenchymal transition-related E-cadherin were upregulated significantly. CONCLUSION: Lutein can inhibit cell adhesion, reduce the expressions of MMPs, and suppress cell invasion and migration by inhibiting the process of epithelial-mesenchymal transition.


Assuntos
Metaloproteinase 2 da Matriz , Neoplasias da Próstata , Masculino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/farmacologia , Paxilina/metabolismo , Paxilina/farmacologia , Luteína/metabolismo , Luteína/farmacologia , Luteína/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/uso terapêutico , Vimentina/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Inibidor Tecidual de Metaloproteinase-1/uso terapêutico , Movimento Celular , Linhagem Celular Tumoral , Caderinas/metabolismo , Caderinas/farmacologia , Caderinas/uso terapêutico , Neoplasias da Próstata/patologia , Invasividade Neoplásica , Transição Epitelial-Mesenquimal
2.
Contemp Oncol (Pozn) ; 21(2): 91-97, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28947877

RESUMO

Mesenchymal stem cells (MSCs) are attractive seed cells for immunotherapy, tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities, diverse immunoregulatory functions and ease of isolation from a wide range of tissues. MSCs exert their immunoregulatory effect on immune cells via cell-to-cell contact and paracrine mechanisms. In turn, MSCs can also be modulated by immune cells. Macrophages are constantly present in the mucosa of the intestinal tract of mammals and play an important role in the development and progression of inflammatory bowel disease (IBD), a chronic and recurrent inflammatory disease of the gastrointestinal tract characterized by idiopathic mucosal inflammation. The increased morbidity and mortality of IBD have made it a disease hard to cure in the clinic. MSCs have emerged as an important tool for IBD therapy due to their abilities to differentiate into enterocyte-like cells and regulate inflammatory cells, especially macrophages. In this review, we discuss the recent advances in the interaction between MSCs and macrophages in diseases, with an emphasis on IBD. We propose that an optimized MSC-based therapy would provide a novel strategy for the treatment of IBD and the prevention of IBD-associated colorectal cancer (CRC).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...