Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
APL Bioeng ; 8(2): 026111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38726021

RESUMO

Human platelet lysates (HPLs) from allogeneic platelet concentrates (PCs) are biomaterials, which are rich in various trophic factors, increasingly used in regenerative medicine and biotherapy. Understanding how preparation methods influence the HPL protein profile, biological function, and clinical outcomes is crucial. Our study sheds light on the proteomes and functionality of different HPLs, with the aim of advancing their scientifically grounded clinical applications. To achieve this, PCs suspended in plasma underwent three distinct processing methods, resulting in seven HPL types. We used three characterization techniques: label-free proteomics and tandem mass tag (TMT)-based quantitative proteomics, both before and after the immunodepletion of abundant plasma proteins. Bioinformatic tools assessed the proteome, and western blotting validated our quantitative proteomics data. Subsequent pre-clinical studies with fluorescent labeling and label-free proteomics were used as a proof of concept for brain diffusion. Our findings revealed 1441 proteins detected using the label-free method, 952 proteins from the TMT experiment before and after depletion, and 1114 proteins from the subsequent TMT experiment on depleted HPLs. Most detected proteins were cytoplasmic, playing key roles in catalysis, hemostasis, and immune responses. Notably, the processing methodologies significantly influenced HPL compositions, their canonical pathways, and, consequently, their functionality. Each HPL exhibited specific abundant proteins, providing valuable insight for tailored clinical applications. Immunoblotting results for selected proteins corroborated our quantitative proteomics data. The diffusion and differential effects to the hippocampus of a neuroprotective HPL administered intranasally to mice were demonstrated. This proteomics study advances our understanding of HPLs, suggesting ways to standardize and customize their production for better clinical efficacy in regenerative medicine and biotherapy. Proteomic analyses also offered objective evidence that HPPL, upon intranasal delivery, not only effectively diffuses to the hippocampus but also alters protein expression in mice, bolstering its potential as a treatment for memory impairments.

2.
Bioengineering (Basel) ; 11(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790297

RESUMO

Dysphagia is a pervasive health issue that impacts diverse demographic groups worldwide, particularly the elderly, stroke survivors, and those suffering from neurological disorders. This condition poses substantial health risks, including malnutrition, respiratory complications, and increased mortality. Additionally, it exacerbates economic burdens by extending hospital stays and escalating healthcare costs. Given that this disorder is frequently underestimated in vulnerable populations, there is an urgent need for enhanced diagnostic and therapeutic strategies. Traditional diagnostic tools such as the videofluoroscopic swallowing study (VFSS) and flexible endoscopic evaluation of swallowing (FEES) require interpretation by clinical experts and may lead to complications. In contrast, non-invasive sensors offer a more comfortable and convenient approach for assessing swallowing function. This review systematically examines recent advancements in non-invasive swallowing function detection devices, focusing on the validation of the device designs and their implementation in clinical practice. Moreover, this review discusses the swallowing process and the associated biomechanics, providing a theoretical foundation for the technologies discussed. It is hoped that this comprehensive overview will facilitate a paradigm shift in swallowing assessments, steering the development of technologies towards more accessible and accurate diagnostic tools, thereby improving patient care and treatment outcomes.

3.
Biomimetics (Basel) ; 9(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534855

RESUMO

Malignant tumors have become one of the serious public health problems in human safety and health, among which the chest and abdomen diseases account for the largest proportion. Early diagnosis and treatment can effectively improve the survival rate of patients. However, respiratory motion in the chest and abdomen can lead to uncertainty in the shape, volume, and location of the tumor, making treatment of the chest and abdomen difficult. Therefore, compensation for respiratory motion is very important in clinical treatment. The purpose of this review was to discuss the research and development of respiratory movement monitoring and prediction in thoracic and abdominal surgery, as well as introduce the current research status. The integration of modern respiratory motion compensation technology with advanced sensor detection technology, medical-image-guided therapy, and artificial intelligence technology is discussed and analyzed. The future research direction of intraoperative thoracic and abdominal respiratory motion compensation should be non-invasive, non-contact, use a low dose, and involve intelligent development. The complexity of the surgical environment, the constraints on the accuracy of existing image guidance devices, and the latency of data transmission are all present technical challenges.

4.
J Affect Disord ; 351: 15-23, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38281596

RESUMO

BACKGROUND: Late-life depression (LLD) is associated with risk of dementia, yet intervention of LLD provides an opportunity to attenuate subsequent cognitive decline. Omega-3 polyunsaturated fatty acids (PUFAs) supplement is a potential intervention due to their beneficial effect in depressive symptoms and cognitive function. To explore the underlying neural mechanism, we used resting-state functional MRI (rs-fMRI) before and after omega-3 PUFAs supplement in older adults with LLD. METHODS: A 52-week double-blind randomized controlled trial was conducted. We used multi-scale sample entropy to analyze rs-fMRI data. Comprehensive cognitive tests and inflammatory markers were collected to correlate with brain entropy changes. RESULTS: A total of 20 patients completed the trial with 11 under omega-3 PUFAs and nine under placebo. While no significant global cognitive improvement was observed, a marginal enhancement in processing speed was noted in the omega-3 PUFAs group. Importantly, participants receiving omega-3 PUFAs exhibited decreased brain entropy in left posterior cingulate gyrus (PCG), multiple visual areas, the orbital part of the right middle frontal gyrus, and the left Rolandic operculum. The brain entropy changes of the PCG in the omega-3 PUFAs group correlated with improvement of language function and attenuation of interleukin-6 levels. LIMITATIONS: Sample size is small with only marginal clinical effect. CONCLUSION: These findings suggest that omega-3 PUFAs supplement may mitigate cognitive decline in LLD through anti-inflammatory mechanisms and modulation of brain entropy. Larger clinical trials are warranted to validate the potential therapeutic implications of omega-3 PUFAs for deterring cognitive decline in patients with late-life depression.


Assuntos
Depressão , Ácidos Graxos Ômega-3 , Humanos , Idoso , Entropia , Ácidos Graxos Ômega-3/uso terapêutico , Encéfalo/diagnóstico por imagem , Método Duplo-Cego , Cognição
5.
Int J Cosmet Sci ; 46(3): 457-467, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38224116

RESUMO

OBJECTIVES: Conventional hair permanent waving (PW) and permanent straightening processes typically involve two steps: reduction, for breaking -S-S- bond in cystine into cysteine and oxidation for -S-S- bond reconnection. However, it is known that the hair incurs damage during the oxidation step. In this work, we proposed a novel strategy to reconnect reduced disulfide bonds in hair via the thiol-Michael click reaction, by using a symmetric Michael reagent. METHODS: Virgin black Chinese hair was reduced using 8% wt thioglycolic acid and employed as model hair containing a high content of broken disulfide bonds. The reduced hair was treated with 1,4-n-butylene dimaleate. Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to verify the chemical changes occurred in untreated and treated hair fibre. Single-fibre mechanical properties and thermal properties of the hair were evaluated using tensile testing and differential scanning calorimetry (DSC), respectively. RESULTS: The 1,4-n-butylene dimaleate could reconnect free thiol groups generated by disulfide bond reduction via thiol-Michael click reaction and significantly improve the mechanical strength of hair compared to that of the reduced hair. Secondary conformational resolution analysis of FT-IR results revealed that the content of α-helix structure could be restored after treatment with 1,4-n-butylene dimaleate. The intermolecular forces established by the newly generated C-S bonds compensate the broken disulfide bonds and enhance the fracture strength of the hair compared to that of reduced hair. Michael reagents of similar structure also showed similar performance in restoring the mechanical properties of reduced hair. CONCLUSIONS: Our data suggest that 1,4-n-butylene dimaleate can restore the mechanical properties of reduced hair by reconnecting reduced disulfide bonds and restoring the secondary conformation of hair keratin.


OBJECTIFS: Les processus classiques d'ondulation permanente (OP) et de lissage permanent des cheveux impliquent généralement deux étapes : la réduction, pour rompre la liaison ­S­S­ de la cystine en cystéine, et l'oxydation, pour reconnecter la liaison ­S­S­. Cependant, on sait que les cheveux subissent des dommages pendant l'étape d'oxydation. Dans ce travail, nous avons proposé une nouvelle stratégie pour reconnecter les liaisons disulfures réduites dans les cheveux via la réaction de thiol­Michael, en utilisant un réactif de Michael symétrique. MÉTHODES: Des cheveux noirs vierges chinois ont été réduits à l'aide d'acide thioglycolique à 8 % en poids et utilisés comme modèle de cheveux contenant une grande quantité de liaisons disulfures cassées. Les cheveux réduits ont été traités avec du dimaléate de 1,4­n­butylène. La spectroscopie de Raman et la spectroscopie infrarouge à transformée de Fourier (FT­IR) ont été utilisées pour vérifier les changements chimiques survenus dans les fibres capillaires non traitées et traitées. Les propriétés mécaniques à fibre unique et les propriétés thermiques des cheveux ont été évaluées à l'aide d'un test de traction et d'une calorimétrie différentielle à balayage (Differential Scan Calorimetry, DSC), respectivement. RÉSULTATS: Le dimaléate de 1,4­n­butylène pourrait reconnecter les groupes thiol libre générés par la réduction des liaisons disulfures via la réaction de thiol­Michael et améliorer de manière significative la résistance mécanique des cheveux par rapport à celle des cheveux réduits. L'analyse de la résolution conformationnelle secondaire des résultats de la FT­IR a révélé que le contenu de la structure en hélice alpha pouvait être restauré après un traitement avec le dimaléate de 1,4­n­butylène. Les forces intermoléculaires établies par les nouvelles liaisons C­S compensent les liaisons disulfures cassées et améliorent la résistance à la rupture des cheveux par rapport à celle des cheveux réduits. Les réactifs de Michael de structure similaire ont également montré des performances similaires dans la restauration des propriétés mécaniques des cheveux réduits. CONCLUSIONS: Nos données montrent que le dimaléate de 1,4­n­butylène peut restaurer les propriétés mécaniques des cheveux réduits en reconnectant les liaisons disulfures réduites et en restaurant la conformation secondaire de la kératine des cheveux.


Assuntos
Química Click , Cisteína , Cabelo , Compostos de Sulfidrila , Cabelo/química , Cabelo/efeitos dos fármacos , Química Click/métodos , Cisteína/química , Cisteína/análogos & derivados , Compostos de Sulfidrila/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Humanos , Oxirredução , Varredura Diferencial de Calorimetria
6.
J Biochem Mol Toxicol ; 37(12): e23503, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37706594

RESUMO

Diabetic kidney disease (DKD) is a devastating complication of diabetes mellitus (DM) and is the most prevalent chronic kidney disease (CKD). Poricoic acid A (PAA), a component isolated from Traditional Chinese Medicine (TCM) Poria cocos, has hypoglycaemic and anti-fibrosis effects. However, the role of PAA in DKD remains largely unclear. To mimics an in vitro model of DKD, the mouse podocyte MPC5 cells were treated with high glucose (25 mM; HG) for 24 h. CCK-8 and flow cytometry assays were conducted for assessing MPC5 cell viability and apoptosis. Meanwhile, streptozotocin (STZ) was used to induce experimental DKD in mice by intraperitoneal injection. PAA notably inhibited the apoptosis and inflammation, reduced the generation of ROS, and elevated the MMP level in HG-treated MPC5 cells. Moreover, PAA obviously reduced blood glucose and urine protein levels, inhibited renal fibrosis in DKD mice. Meanwhile, PAA markedly increased LC3 and ATG5 levels and declined p62 and FUNDC1 levels in HG-treated MPC5 cells and in the kidney tissues of DKD mice, leading to the activation of cell mitophagy. Furthermore, the downregulation of FUNDC1 also inhibited apoptosis, inflammation, and promoted mitophagy in HG-treated MPC5 cells. As expected, the knockdown of FUNDC1 further enhanced the protective role of PAA in MPC5 cells following HG treatment, indicating that induction of mitophagy could attenuate podocyte injury. Collectively, PAA could exert beneficial effects on podocyte injury in DKD by promoting mitophagy via downregulating FUNDC1. These findings suggested that PAA may have great potential in alleviating kidney injury in DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Podócitos/metabolismo , Mitofagia , Inflamação/metabolismo , Diabetes Mellitus/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
7.
Platelets ; 34(1): 2237134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580876

RESUMO

Platelet extracellular vesicles (PEVs) are an emerging delivery vehi for anticancer drugs due to their ability to target and remain in the tumor microenvironment. However, there is still a lack of understanding regarding yields, safety, drug loading efficiencies, and efficacy of PEVs. In this study, various methods were compared to generate PEVs from clinical-grade platelets, and their properties were examined as vehicles for doxorubicin (DOX). Sonication and extrusion produced the most PEVs, with means of 496 and 493 PEVs per platelet (PLT), respectively, compared to 145 and 33 by freeze/thaw and incubation, respectively. The PEVs were loaded with DOX through incubation and purified by chromatography. The size and concentration of the PEVs and PEV-DOX were analyzed using dynamic light scattering and nanoparticle tracking analysis. The results showed that the population sizes and concentrations of PEVs and PEV-DOX were in the ranges of 120-150 nm and 1.2-6.2 × 1011 particles/mL for all preparations. The loading of DOX determined using fluorospectrometry was found to be 2.1 × 106, 1.7 × 106, and 0.9 × 106 molecules/EV using freeze/thaw, extrusion, and sonication, respectively. The internalization of PEVs was determined to occur through clathrin-mediated endocytosis. PEV-DOX were more efficiently taken up by MDA-MB-231 breast cancer cells compared to MCF7/ADR breast cancer cells and NIH/3T3 cells. DOX-PEVs showed higher anticancer activity against MDA-MB-231 cells than against MCF7/ADR or NIH/3T3 cells and better than acommercial liposomal DOX formulation. In conclusion, this study demonstrates that PEVs generated by PLTs using extrusion, freeze/thaw, or sonication can efficiently load DOX and kill breast cancer cells, providing a promising strategy for further evaluation in preclinical animal models. The study findings suggest that sonication and extrusion are the most efficient methods to generate PEVs and that PEVs loaded with DOX exhibit significant anticancer activity against MDA-MB-231 breast cancer cells.


What is the context?● Current synthetic drug delivery systems can have limitations and side effects.● Platelet extracellular vesicles (PEVs) are a natural and potentially safer alternative for delivering cancer drugs to tumors.● However, there is still a lack of understanding about how to produce PEVs and how effective they are in delivering drugs.What is new?● We compared different methods for producing PEVs from clinical-grade platelets and found that sonication and extrusion were the most effective methods.● The PEVs were loaded with a cancer drug called doxorubicin (DOX) and tested their ability to kill breast cancer cells.What is the impact?● PEVs loaded with DOX were effective at killing cancer cells, especially MDA-MB-231 breast cancer cells.● This study demonstrates that PEVs are a promising strategy for delivering cancer drugs to tumors and that sonication and extrusion are the most efficient methods for producing PEVs.● The results suggest that further evaluation of PEVs in preclinical animal models is warranted to determine their potential as a cancer drug delivery system.Abbreviations: ADP: adenosine diphosphate; bFGF: basic fibroblast growth factor; BSA: bovine serum albumin; CD41: platelet glycoprotein IIb; CD62P: P-selectin; CFDASE: 5-(and-6)-carboxyfluorescein diacetate: succinimidyl ester; CPLT: cryopreserved platelet; CPZ: chlorpromazine hydrochloride; CTC: circulating tumor cell; DMSO: dimethyl sulfoxide; DDS: drug delivery system; DOX: doxorubicin; EPR: enhanced permeability and retention; EV: extracellular vesicle; FBS: fetal bovine serum; GMP: good manufacturing practice; GF: growth factor; HER2: human epidermal growth factor receptor 2; HGF: hepatocyte growth factor; Lipo-DOX: liposomal doxorubicin; MDR: multi-drug resistance; MMP-2: matrix metalloproteinase-2; MP: microparticle; MSC: mesenchymal stromal cell; NP: nanoparticle; NTA: nanoparticle tracking analysis; PAR-1: protease activated receptor-1; PAS: platelet additive solution; PBS: phosphate-buffered saline; PC: platelet concentrate; PEG: polyethylene glycol; PEV: platelet-derived extracellular vesicle; DOX-PEV: doxorubicin-loaded platelet-derived extracellular vesicle-encapsulated; PFA: paraformaldehyde; PF4: platelet factor 4; P-gp: P-glycoprotein; PLT: platelet; PS: phosphatidylserine; SDS-PAGE: sodium dodecylsulfate polyacrylamide gel electrophoresis; SEM: scanning electron microscopy; TCIPA: tumor cell-induced PLT aggregation; TDDS: targeted drug delivery system; TEG: thromboelastography; TF: tissue factor; TF-EV: extracellular vesicle expressing tissue factor; TME: tumor microenvironment; TNBC: triple-negative breast cancer; TXA2: thromboxane-A2; VEGF: vascular endothelial growth factor; WHO: World Health Organization.


Assuntos
Antineoplásicos , Vesículas Extracelulares , Nanopartículas , Camundongos , Animais , Plaquetas , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia
8.
Bioeng Transl Med ; 8(1): e10360, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684076

RESUMO

Brain administration of human platelet lysates (HPL) is a potential emerging biotherapy of neurodegenerative and traumatic diseases of the central nervous system. HPLs being prepared from pooled platelet concentrates, thereby increasing viral risks, manufacturing processes should incorporate robust virus-reduction treatments. We evaluated a 19 ± 2-nm virus removal nanofiltration process using hydrophilic regenerated cellulose hollow fibers on the properties of a neuroprotective heat-treated HPL (HPPL). Spiking experiments demonstrated >5.30 log removal of 20-22-nm non-enveloped minute virus of mice-mock particles using an immuno-quantitative polymerase chain reaction assay. The nanofiltered HPPL (NHPPL) contained a range of neurotrophic factors like HPPL. There was >2 log removal of extracellular vesicles (EVs), associated with decreased expression of pro-thrombogenic phosphatidylserine and procoagulant activity. LC-MS/MS proteomics showed that ca. 80% of HPPL proteins, including neurotrophins, cytokines, and antioxidants, were still found in NHPPL, whereas proteins associated with some infections and cancer-associated pathways, pro-coagulation and EVs, were removed. NHPPL maintained intact neuroprotective activity in Lund human mesencephalic dopaminergic neuron model of Parkinson's disease (PD), stimulated the differentiation of SH-SY5Y neuronal cells and showed preserved anti-inflammatory function upon intranasal administration in a mouse model of traumatic brain injury (TBI). Therefore, nanofiltration of HPL is feasible, lowers the viral, prothrombotic and procoagulant risks, and preserves the neuroprotective and anti-inflammatory properties in neuronal pre-clinical models of PD and TBI.

9.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431803

RESUMO

Chemical treatments of hair such as dyeing, perming and bleaching could cause mechanical damage to the hair, which weakens the hair fibers and makes the hair break more easily. In this work, hyaluronate (HA) with different molecular weight (MW) was investigated for its effects on restoring the mechanical properties of damaged hair. It was found that low-MW HA (average MW~42 k) could significantly improve the mechanical properties, specifically the elastic modulus, of overbleached hair. The fluorescent-labeling experiments verified that the low-MW HA was able to penetrate into the cortex of the hair fiber, while high-MW HA was hindered. Fourier transform infrared spectrometry (FT-IR) results implied the formation of additional intermolecular hydrogen bonds in the HA-treated hair. Thermos gravimetric analysis (TGA) indicated that the HA-treated hair exhibited decreased content of loosely bonded water, and differential scanning calorimetry (DSC) characterizations suggested stronger water bonding inside the HA-treated hair, which could alleviate the weakening effect of loosely bonded water on the hydrogen bond networks within keratin. Therefore, the improved elastic modulus and mechanical strength of the HA-treated hair could be attributed to the enhanced formation of hydrogen bond networks within keratin. This study illustrates the capability of low-MW HA in hair damage repair, implying an enormous potential for other moisturizers to be used in hair care products.


Assuntos
Cabelo , Queratinas , Humanos , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Cabelo/química , Queratinas/química , Glicosaminoglicanos/farmacologia , Água/análise
10.
Platelets ; 33(8): 1237-1250, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35949054

RESUMO

Corneal endothelial cells (CECs) slowly decrease in number with increasing age, which is a clinical issue as these cells have very limited regenerative ability. Therapeutic platelet biomaterials are increasingly used in regenerative medicine and cell therapy because of their safety, cost-effective manufacture, and global availability from collected platelet concentrates (PCs). Platelet extracellular vesicles (PEVs) are a complex mixture of potent bioactive vesicles rich in molecules believed to be instrumental in tissue repair and regeneration. In this study we investigated the feasibility of using a PEVs preparation as an innovative regenerative biotherapy for corneal endothelial dysfunction. The PEVs were isolated from clinical-grade human PC supernatants by 20,000 × g ultracentrifugation and resuspension. PEVs exhibited a regular, fairly rounded shape, with an average size of <200 nm and were present at a concentration of approximately 1011 /mL. PEVs expressed cluster of differentiation 41 (CD41) and CD61, characteristic platelets membrane markers, and CD9 and CD63. ELISA and LC-MS/MS proteomic analyses revealed that the PEVs contained mixtures of growth factors and multiple other trophic factors, as well as proteins related to extracellular exosomes with functional activities associated with cell cadherin and adherens pathways. CECs treated with PEVs showed increased viability, an enhanced wound-healing rate, stronger proliferation markers, and an improved adhesion rate. PEVs did not exert cellular toxicity as evidenced by the maintenance of cellular morphology and preservation of corneal endothelial proteins. These findings clearly support further investigations of PEV biomaterials in animal models for translation as a new CEC regeneration biotherapy.


Assuntos
Materiais Biocompatíveis , Córnea , Células Endoteliais , Vesículas Extracelulares , Regeneração , Materiais Biocompatíveis/metabolismo , Caderinas/metabolismo , Cromatografia Líquida , Misturas Complexas , Córnea/citologia , Vesículas Extracelulares/metabolismo , Humanos , Proteômica , Espectrometria de Massas em Tandem
11.
Pharmaceutics ; 14(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35631545

RESUMO

Topical and transdermal drug delivery is an effective, safe, and preferred route of drug administration. As such, skin permeability is one of the critical parameters that should be taken into consideration in the process of drug discovery and development. The ex vivo human skin model is considered as the best surrogate to evaluate in vivo skin permeability. This investigation adopted a novel two-QSAR scheme by collectively incorporating machine learning-based hierarchical support vector regression (HSVR) and classical partial least square (PLS) to predict the skin permeability coefficient and to uncover the intrinsic permeation mechanism, respectively, based on ex vivo excised human skin permeability data compiled from the literature. The derived HSVR model functioned better than PLS as represented by the predictive performance in the training set, test set, and outlier set in addition to various statistical estimations. HSVR also delivered consistent performance upon the application of a mock test, which purposely mimicked the real challenges. PLS, contrarily, uncovered the interpretable relevance between selected descriptors and skin permeability. Thus, the synergy between interpretable PLS and predictive HSVR models can be of great use for facilitating drug discovery and development by predicting skin permeability.

12.
Front Pharmacol ; 13: 1071946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686696

RESUMO

Aims: Ferroptosis plays important roles in tumorigenesis and cancer therapy. Zoledronic acid is known to inhibit the activity of farnesyl pyrophosphate synthase, a key enzyme in the mevalonate pathway. We examined whether zoledronic acid can inhibit the growth of osteosarcoma cells by inducing ferroptosis. Methods: Cell viability was analyzed by using CCK8 reagent and counting cells with trypan blue exclusion. Ferroptosis markers including lipid peroxide and PTGS2 expression were examined by flow cytometry, western blot, and quantitative PCR analyses. Cellular ubiquinone content was determined using high performance liquid chromatography. Ferrostatin-1 and RSL3 were used as the ferroptosis inhibitor and inducer respectively. Results: Zoledronic acid treatment decreased cell viability and promoted the increase in lipid peroxide content and PTGS2 expression. Addition of ferrostatin-1 reverted these effects of zoledronic acid on osteosarcoma cells, supporting a role of zoledronic acid in inducing ferroptosis. Mechanistically, zoledronic acid significantly decreased ubiquinone, a metabolite of the mevalonate pathway. Treating cells with exogenous ubiquinone prevented zoledronic acid-induced ferroptosis and decrease in the growth of osteosarcoma cells. In addition, zoledronic acid enhanced the expression of HMOX1, whereas knockdown of HMOX1 inhibited the zoledronic acid-induced increase in lipid peroxide level and decrease in cell growth. Finally, zoledronic acid together with RSL3 significantly enhanced the inhibitory effect on the growth of osteosarcoma cells. Conclusion: Our results indicate that zoledronic acid induces ferroptosis by decreasing ubiquinone content and promoting HMOX1 expression in osteosarcoma cells. Zoledronic acid together with ferroptosis inducer may be a promising new strategy for the treatment of osteosarcoma.

13.
Front Endocrinol (Lausanne) ; 13: 1112703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714605

RESUMO

Background: Diabetic muscle infarction (DMI), which is also referred to as diabetic myonecrosis, is a rare and long-term complication of poorly controlled diabetes mellitus, while we found that acute diabetes decompensation, such as diabetic ketoacidosis (DKA), could also stimulate the occurrence and development of DMI. Case presentation: A 23-year-old woman with type 1 diabetes presented with a 10-day history of nausea, vomiting, pain, and swelling of her left leg. Her urine ketone test was positive. The 3-beta-hydroxybutyrate and leukocyte counts and creatine kinase levels were elevated. Magnetic resonance imaging of the left thigh revealed extensive deep tissue oedema and an increase in the T2 signal in the involved muscles. Once the diagnosis of DMI was made, she was managed with rest, celecoxib, clopidogrel and aggressive insulin therapy. Three months after treatment, the patient reported complete resolution of symptoms. Conclusion: DMI is a rare DM complication with a high recurrence rate, commonly presenting with chronic complications, while our case report shows that acute diabetes decompensation, such as DKA, can stimulate the occurrence and development of DMI. Timely diagnosis and appropriate treatment could shorten the recovery time.


Assuntos
Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Humanos , Feminino , Adulto Jovem , Adulto , Cetoacidose Diabética/complicações , Músculo Esquelético/patologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/patologia , Infarto/diagnóstico , Infarto/etiologia , Infarto/patologia , Perna (Membro)
14.
BMC Pregnancy Childbirth ; 21(1): 787, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34802422

RESUMO

BACKGROUND: Xeroderma pigmentosum complementation group C (XPC) is a DNA damage recognition protein that plays an important role in nucleotide excision repair and can reduce oxidative stress, which may be involved in the development of preeclampsia (PE). Therefore, the aim of this study was to explore whether XPC polymorphisms were relevant to the genetic susceptibility to PE in Chinese Han women. METHOD: A total of 1276 healthy pregnant women were included as the control group and 958 pregnant women with PE as the case group. DNA was extracted from peripheral blood samples to perform genotyping of loci rs2228001 and rs2228000 in XPC through real-time quantitative polymerase chain reaction (PCR). The relationship between XPC and susceptibility to PE was evaluated by comparing the genotypic and allelic frequencies between the two groups of pregnant women. RESULTS: Polymorphism of rs2228000 may be associated with PE risk and allele T may play a protective role (genotype, χ2 = 38.961, P < 0.001 and allele χ2 = 21.746 P < 0.001, odds ratio (OR) = 0.885, 95% confidence interval (CI) = 0.840-0.932). No significant difference was found between the two groups in rs2228001,(genotype χ2 = 3.148, P = 0.207 and allele χ2 = 0.59, P = 0.442, OR = 1.017, 95% CI = 0.974-1.062). When the frequencies of genotypes and alleles for early- and late-onset PE, mild PE and severe PE were compared with those of controls, the results were consistent with the large clinical sample. CONCLUSION: Our data suggest that the genetic variant rs2228000 in XPC may be associated with PE risk in Chinese Han women, and that pregnant women with the TT genotype have a reduced risk of PE. Further investigations are needed to confirm these findings in other regions or larger prospective populations.


Assuntos
Polimorfismo de Nucleotídeo Único , Pré-Eclâmpsia/genética , Gravidez , Xeroderma Pigmentoso/genética , Adulto , Povo Asiático/genética , Feminino , Frequência do Gene , Loci Gênicos , Predisposição Genética para Doença , Genótipo , Humanos , Desequilíbrio de Ligação
15.
Blood Transfus ; 19(6): 467-478, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34369872

RESUMO

BACKGROUND: Plasma-derived immunoglobulins (IgG) are essential medicines that are in worldwide shortage, especially in low- and middle-income countries. Optimised manufacturing processes can increase supply. We evaluated various new process steps for IgG fractionation. MATERIAL AND METHODS: A crude, worst-case, IgG intermediate obtained by caprylic acid fractionation of cryoprecipitate-poor plasma was used as starting experimental material. It was processed inline by Fractogel® (Merck) TMAE anion-exchanger to deplete IgA and IgM, Eshmuno® P (Merck) anti-A and anti-B affinity chromatography to remove anti-A and anti-B isoagglutinins, 0.3% TnBP-1% Triton X-100 (S/D) treatment, C18 chromatography for removal of S/D agents, and single-pass tangential flow filtration (SPTFF) concentration to 20%. Quality, safety, and recovery were evaluated at small and pilot scales to assess purity, removal of IgA, IgM isoagglutinins, S/D agents, thrombogenic factors, and lack of toxicity in a cell model. RESULTS: The starting IgG intermediate contained approximately 90% IgG, IgA, and IgM and 10% albumin. Fractogel® TMAE, equilibrated in 25 mM sodium acetate-pH 6.0 and loaded with up to 225 mg of IgG/mL, could remove IgA and IgM, with over 94% IgG recovery with preserved sub-class distribution in the flow-through. Sequential Eshmuno®-P anti-A and anti-B columns efficiently removed isoagglutinins. The C18 packing, used at up to 17 mL of S/D-IgG solution per mL, removed TnBP and Triton X-100 to less than 1 and 2 ppm, respectively. The 20% purified IgG was devoid of activated factor XI and thrombin generation activity. DISCUSSION: This purification sequence yields a >99% pure, 20% (v/v) IgG product, depleted of IgA, isoagglutinins, and thrombogenic markers, and should be implementable on various IgG intermediates to help improve the supply of immunoglobulins.


Assuntos
Fracionamento Químico , Imunoglobulina G , Humanos , Imunoglobulina A , Imunoglobulina M , Plasma
16.
Cytotherapy ; 23(10): 902-907, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34238658

RESUMO

BACKGROUND AIMS: Platelet concentrates (PCs) are pooled to prepare human platelet lysate (HPL) supplements of growth media to expand primary human cells for transplantation; this increases the risk of contamination by known, emerging, and unknown viruses. This possibility should be of concern because viral contamination of cell cultures is difficult to detect and may have detrimental consequences for recipients of cell therapies. Viral reduction treatments of chemically defined growth media have been proposed, but they are not applicable when media contain protein supplements currently needed to expand primary cell cultures. Recently, we successfully developed a Planova 35NPlanova 20N nanofiltration sequence of growth media supplemented with two types of HPL. The nanofiltered medium was found to be suitable for mesenchymal Stromal cell (MSC) expansion. METHODS: Herein, we report viral clearance achieved by this nanofiltration process used for assessing a new experimental model using non-infectious minute virus of mice-mock virus particle (MVM-MVP) and its quantification by an immunoqPCR. Then, high doses of MVM-MVP (1012 MVPs/mL) were spiked to obtain a final concentration of 1010 MVPs/mL in Planova 35N-nanofiltered growth medium supplemented with both types of HPLs [serum converted platelet lysate SCPL) and intercept human platelet lysate (I-HPL)] at 10% (v/v) and then filtering through Planova 20N. RESULTS: No substantial interference of growth medium matrices by the immune-qPCR assay was first verified. Log reduction values (LRVs) were ≥ 5.43 and ≥ 5.36 respectively, SCPL and I-HPL media. MVM-MVPs were also undetectable by dynamic light scattering and transmission electron microscopy. CONCLUSIONS: The nanofiltration of growth media supplemented with 10% HPL provides robust removal of small nonenveloped viruses, and is an option to improve the safety of therapeutic cells expanded using HPL supplements.


Assuntos
Células-Tronco Mesenquimais , Vírus Miúdo do Camundongo , Animais , Técnicas de Cultura de Células , Meios de Cultura , Humanos , Camundongos , Vírion
17.
Brain ; 144(10): 3142-3158, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34086871

RESUMO

Traumatic brain injury (TBI) leads to major brain anatomopathological damages underlined by neuroinflammation, oxidative stress and progressive neurodegeneration, ultimately leading to motor and cognitive deterioration. The multiple pathological events resulting from TBI can be addressed not by a single therapeutic approach, but rather by a synergistic biotherapy capable of activating a complementary set of signalling pathways and providing synergistic neuroprotective, anti-inflammatory, antioxidative, and neurorestorative activities. Human platelet lysate might fulfil these requirements as it is composed of a plethora of biomolecules readily accessible as a TBI biotherapy. In the present study, we tested the therapeutic potential of human platelet lysate using in vitro and in vivo models of TBI. We first prepared and characterized platelet lysate from clinical-grade human platelet concentrates. Platelets were pelletized, lysed by three freeze-thaw cycles, and centrifuged. The supernatant was purified by 56°C 30 min heat treatment and spun to obtain the heat-treated platelet pellet lysate that was characterized by ELISA and proteomic analyses. Two mouse models were used to investigate platelet lysate neuroprotective potential. The injury was induced by an in-house manual controlled scratching of the animals' cortex or by controlled cortical impact injury. The platelet lysate treatment was performed by topical application of 60 µl in the lesioned area, followed by daily 60 µl intranasal administration from Day 1 to 6 post-injury. Platelet lysate proteomics identified over 1000 proteins including growth factors, neurotrophins, and antioxidants. ELISA detected several neurotrophic and angiogenic factors at ∼1-50 ng/ml levels. We demonstrate, using two mouse models of TBI, that topical application and intranasal platelet lysate consistently improved mouse motor function in the beam and rotarod tests, mitigated cortical neuroinflammation, and oxidative stress in the injury area, as revealed by downregulation of pro-inflammatory genes and the reduction in reactive oxygen species levels. Moreover, platelet lysate treatment reduced the loss of cortical synaptic proteins. Unbiased proteomic analyses revealed that heat-treated platelet pellet lysate reversed several pathways promoted by both controlled cortical impact and cortical brain scratch and related to transport, postsynaptic density, mitochondria or lipid metabolism. The present data strongly support, for the first time, that human platelet lysate is a reliable and effective therapeutic source of neurorestorative factors. Therefore, brain administration of platelet lysate is a therapeutical strategy that deserves serious and urgent consideration for universal brain trauma treatment.


Assuntos
Terapia Biológica/métodos , Plaquetas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Administração Intranasal , Animais , Lesões Encefálicas Traumáticas/patologia , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Platelets ; 32(2): 226-237, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32106742

RESUMO

The neurorestorative efficacy of human platelet lysates in neurodegenerative disorders is still under investigation. Platelets prepared from standard and pathogen reduced platelet concentrates were pelletized, washed, concentrated, and subjected to freeze-thawing. The lysate was heated to 56°C for 30 min and characterized. Toxicity was evaluated using SH-SY5Y neuroblastoma, BV-2 microglial, and EA-hy926 endothelial cells. Inflammatory activity was tested by examining tumor necrosis factor (TNF) and cyclooxygenase (COX)-2 expressions by BV-2 microglia with or without stimulation by lipopolysaccharides (LPS). The capacity to stimulate wound healing was evaluated by a scratch assay, and the capacity to differentiate SH-SY5Y into neurons was also examined. Platelet lysates contained a range of neurotrophins. They were not toxic to SH-SY5Y, EA-hy926, or BV-2 cells, did not induce the expression of TNF or COX-2 inflammatory markers by BV-2 microglia, and decreased inflammation after LPS stimulation. They stimulated the wound closure in the scratch assay and induced SH-SY5Y differentiation as revealed by the increased length of neurites as well as ß3-tubulin and neurofilament staining. These data confirm the therapeutic potential of platelet lysates in the treatment of disorders of the central nervous system and support further evaluation as novel neurorestorative biotherapy in preclinical models.


Assuntos
Plaquetas/metabolismo , Cicatrização/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Microglia/metabolismo
19.
Platelets ; 32(2): 152-162, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33251940

RESUMO

A pathogen-free and standardized xeno-free supplement of growth media is required for the ex vivo propagation of human cells used as advanced therapeutic medicinal products and for clinical translation in regenerative medicine and cell therapies. Human platelet lysate (HPL) made from therapeutic-grade platelet concentrate (PC) is increasingly regarded as being an efficient xeno-free alternative growth medium supplement to fetal bovine serum (FBS) for clinical-grade isolation and/or propagation of human cells. Most experimental studies establishing the superiority of HPL over FBS were conducted using mesenchymal stromal cells (MSCs) from bone marrow or adipose tissues. Data almost unanimously concur that MSCs expanded in a media supplemented with HPL have improved proliferation, shorter doubling times, and preserved clonogenicity, immunophenotype, in vitro trilineage differentiation capacity, and T-cell immunosuppressive activity. HPL can also be substituted for FBS when propagating MSCs from various other tissue sources, including Wharton jelly, the umbilical cord, amniotic fluid, dental pulp, periodontal ligaments, and apical papillae. Interestingly, HPL xeno-free supplementation is also proving successful for expanding human-differentiated cells, including chondrocytes, corneal endothelium and corneal epithelium cells, and tenocytes, for transplantation and tissue-engineering applications. In addition, the most recent developments suggest the possibility of successfully expanding immune cells such as macrophages, dendritic cells, and chimeric antigen receptor-T cells in HPL, further broadening its use as a growth medium supplement. Therefore, strong scientific rationale supports the use of HPL as a universal growth medium supplement for isolating and propagating therapeutic human cells for transplantation and tissue engineering. Efforts are underway to ensure optimal standardization and pathogen safety of HPL to secure its reliability for clinical-grade cell-therapy and regenerative medicine products and tissue engineering.


Assuntos
Plaquetas/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos
20.
Platelets ; 32(2): 259-272, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33245683

RESUMO

Human platelet lysates (HPLs), rich in various growth factors and cell growth-promoting molecules, encompass a new range of blood products that are being used for regenerative medicine, cell therapies, and tissue engineering. Well-characterized dedicated preparations, tailor-made to best fit specific therapeutic applications, are needed for optimal clinical efficacy and safety. Here, five types of HPL were prepared from the same platelet concentrates and extensively characterized to determine and compare their proteins, growth factors, cytokines, biochemical profiles, thrombin-generating capacities, thrombin-associated proteolytic activities, phospholipid-associated procoagulant potential, contents of extracellular vesicles expressing phosphatidylserine and tissue factor, and antioxidative properties. Our results revealed that all five HPL preparations contained detectable supraphysiological levels, in the ca. 0.1 ~ 350-ng/ml range, of all growth factors assessed, except insulin-like growth factor-1 detected only in HPL containing plasma. There were significant differences observed among these HPLs in total protein content, fibrinogen, complement components C3 and C4, albumin, and immunoglobulin G, and, most importantly, in their functional coagulant and procoagulant activities and antioxidative capacities. Our data revealed that the biochemical and functional properties of HPL preparations greatly vary depending upon their mode of production, with potential impacts on the safety and efficacy for certain clinical indications. Modes of preparation of HPLs should be carefully designed, and the product properties carefully evaluated based on the intended therapeutic use to ensure optimal clinical outcomes.


Assuntos
Técnicas de Cultura de Células/métodos , Engenharia Tecidual/métodos , Plaquetas/metabolismo , Diferenciação Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...