Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(36): e2310304, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39072947

RESUMO

Despite the success of immunotherapy in treating hepatocellular carcinoma (HCC), HCC remains a severe threat to health. Here, a crucial transcription factor, SOX12, is revealed that induces the immunosuppression of liver tumor microenvironment. Overexpressing SOX12 in HCC syngeneic models increases intratumoral regulatory T-cell (Treg) infiltration, decreases CD8+T-cell infiltration, and hastens HCC metastasis. Hepatocyte-specific SOX12 knockout attenuates DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SOX12 knock-in accelerates these effects. Mechanistically, SOX12 transcriptionally activates C-C motif chemokine ligand 22 (CCL22) expression to promote the recruitment and suppressive activity of Tregs. Moreover, SOX12 transcriptionally upregulates CD274 expression to suppress CD8+T-cell infiltration. Either knockdown of CCL22 or PD-L1 dampens SOX12-mediated HCC metastasis. Blocking of CC chemokine receptor 4 (CCR4), a receptor for CCL22, by inhibitor C-021 or Treg-specific knockout of CCR4 inhibits SOX12-mediated HCC metastasis. Transforming growth factor-ß1 (TGF-ß1)/TGFßR1-Smad2/3/4 is identified as a key upstream signaling for SOX12 overexpression in HCC cells. Combining C-021 or TGFßR1 inhibitor galunisertib with anti-PD-L1 exhibits an enhanced antitumor effect in two HCC models. Collectively, the findings demonstrate that SOX12 contributes to HCC immunosuppression through the CCL22/CCR4-Treg and PD-L1-CD8+T axes. Blocking of CCR4 or TGFßR1 improves the efficacy of anti-PD-L1 in SOX12-mediated HCC.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Neoplasias Hepáticas , Fatores de Transcrição SOXC , Linfócitos T Reguladores , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Camundongos , Linfócitos T Reguladores/imunologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Modelos Animais de Doenças , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Humanos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Masculino , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Linhagem Celular Tumoral
2.
Cell Commun Signal ; 22(1): 350, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965548

RESUMO

T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/genética , Animais , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Terapia de Alvo Molecular
3.
Chin Med J (Engl) ; 137(11): 1271-1284, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38738689

RESUMO

ABSTRACT: In humans, the liver is a central metabolic organ with a complex and unique histological microenvironment. Hepatocellular carcinoma (HCC), which is a highly aggressive disease with a poor prognosis, accounts for most cases of primary liver cancer. As an emerging hallmark of cancers, metabolic reprogramming acts as a runaway mechanism that disrupts homeostasis of the affected organs, including the liver. Specifically, rewiring of the liver metabolic microenvironment, including lipid metabolism, is driven by HCC cells, propelling the phenotypes of HCC cells, including dissemination, invasion, and even metastasis in return. The resulting formation of this vicious loop facilitates various malignant behaviors of HCC further. However, few articles have comprehensively summarized lipid reprogramming in HCC metastasis. Here, we have reviewed the general situation of the liver microenvironment and the physiological lipid metabolism in the liver, and highlighted the effects of different aspects of lipid metabolism on HCC metastasis to explore the underlying mechanisms. In addition, we have recapitulated promising therapeutic strategies targeting lipid metabolism and the effects of lipid metabolic reprogramming on the efficacy of HCC systematical therapy, aiming to offer new perspectives for targeted therapy.


Assuntos
Carcinoma Hepatocelular , Metabolismo dos Lipídeos , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metabolismo dos Lipídeos/fisiologia , Microambiente Tumoral , Metástase Neoplásica
4.
Biomark Res ; 12(1): 21, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321558

RESUMO

Transcription factor BTB domain and CNC homology 1 (BACH1) belongs to the Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family. BACH1 is widely expressed in mammalian tissues, where it regulates epigenetic modifications, heme homeostasis, and oxidative stress. Additionally, it is involved in immune system development. More importantly, BACH1 is highly expressed in and plays a key role in numerous malignant tumors, affecting cellular metabolism, tumor invasion and metastasis, proliferation, different cell death pathways, drug resistance, and the tumor microenvironment. However, few articles systematically summarized the roles of BACH1 in cancer. This review aims to highlight the research status of BACH1 in malignant tumor behaviors, and summarize its role in immune regulation in cancer. Moreover, this review focuses on the potential of BACH1 as a novel therapeutic target and prognostic biomarker. Notably, the mechanisms underlying the roles of BACH1 in ferroptosis, oxidative stress and tumor microenvironment remain to be explored. BACH1 has a dual impact on cancer, which affects the accuracy and efficiency of targeted drug delivery. Finally, the promising directions of future BACH1 research are prospected. A systematical and clear understanding of BACH1 would undoubtedly take us one step closer to facilitating its translation from basic research into the clinic.

5.
Cell Death Discov ; 10(1): 67, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331879

RESUMO

The sex-determining region Y (SRY)-related high-mobility group (HMG) box (SOX) family, composed of 20 transcription factors, is a conserved family with a highly homologous HMG domain. Due to their crucial role in determining cell fate, the dysregulation of SOX family members is closely associated with tumorigenesis, including tumor invasion, metastasis, proliferation, apoptosis, epithelial-mesenchymal transition, stemness and drug resistance. Despite considerable research to investigate the mechanisms and functions of the SOX family, confusion remains regarding aspects such as the role of the SOX family in tumor immune microenvironment (TIME) and contradictory impacts the SOX family exerts on tumors. This review summarizes the physiological function of the SOX family and their multiple roles in tumors, with a focus on the relationship between the SOX family and TIME, aiming to propose their potential role in cancer and promising methods for treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA