Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.672
Filtrar
2.
J Vasc Surg ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002606

RESUMO

OBJECTIVE: Premature peripheral arterial disease (PAD) (age ≤ 50) has been shown to negatively impact the outcomes of lower extremity revascularization (LER). Patients with premature PAD have an increased risk of major amputation compared to older patients. The primary goal of this study is to compare the frequency of reinterventions after LER in patients with premature PAD to their older counterparts with common age of presentation (i.e., 60-80 years). METHODS: A retrospective review of consecutive patients undergoing LER for PAD in a single center was performed. Clinical, procedural, and socioeconomic characteristics were compared between patients with premature PAD and the older group. Perioperative as well as long-term outcomes were captured and compared including mortality, major amputation, reintervention rate and frequency, as well as major adverse limb events (MALEs). RESULTS: There were 1,274 patients who underwent LER (4.3% premature, 61.8% age 60-80). Premature PAD patients were more likely to be females of racial minorities. Notably, the mean distressed communities index (DCI) score was significantly higher in the premature PAD group compared to the older patients. Patients with premature PAD were significantly more likely to have end-stage renal disease but less likely to have hypertension, hyperlipidemia, and coronary artery disease compared to older patients. There was no significant difference in perioperative complications. After a mean follow up of 5 years, patients with premature PAD were significantly more likely to undergo more frequent reinterventions compared to older patients. Kaplan-Meier curves showed similar overall survival and MALE-free survival between the 2 groups. CONCLUSIONS: Patients with premature PAD are likely to undergo more frequent reinterventions after initial LER and have similar 5-year survival curves compared to patients at least 20 years older. Demographic and socioeconomic differences impacting patients with premature PAD, even in this relatively underpowered institutional experience, are striking and warrant further investigation.

3.
Food Funct ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023014

RESUMO

A proteomics-based analysis of the effect of heat inactivation on the alleviation of alcoholic liver disease (ALD) using Levilactobacillus brevis PDD-2 is presented, aimed at exploring the potential and mechanisms of postbiotic elements prepared through heat inactivation in the treatment of ALD. It was found that L. brevis PDD-2 and its postbiotic (heat-inactivated L. brevis PDD-2) alleviate chronic ALD via the gut-liver axis. In particular, heat-inactivated L. brevis PDD-2 significantly increased the relative abundance of Erysipelotrichaceae and better facilitated the oxidative stress balance in the liver. The tandem mass tag (TMT)-based quantitative proteomics technique analyses revealed that heat-inactivated L. brevis PDD-2 was associated with up-regulated expression levels of proteins related to the redox system, cellular metabolism, amino acid and oligopeptide transport, and surface proteins with immunomodulatory capacity. These findings provide a theoretical basis for developing novel therapeutic strategies and lay a solid foundation for further revealing its exhaustive mechanisms.

4.
PLoS Comput Biol ; 20(7): e1012274, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990982

RESUMO

Altruistic punishment is key to establishing cooperation and maintaining social order, yet its developmental trends across cultures remain unclear. Using computational reinforcement learning models, we provided the first evidence of how social feedback dynamically influences group-biased altruistic punishment across cultures and the lifespan. Study 1 (n = 371) found that Chinese participants exhibited higher learning rates than Americans when socially incentivized to punish unfair allocations. Additionally, Chinese adults showed slower learning and less exploration when punishing ingroups than outgroups, a pattern absent in American counterparts, potentially reflecting a tendency towards ingroup favoritism that may contribute to reinforcing collectivist values. Study 2 (n = 430, aged 12-52) further showed that such ingroup favoritism develops with age. Chinese participants' learning rates for ingroup punishment decreased from adolescence into adulthood, while outgroup rates stayed constant, implying a process of cultural learning. Our findings highlight cultural and age-related variations in altruistic punishment learning, with implications for social reinforcement learning and culturally sensitive educational practices promoting fairness and altruism.

5.
Front Microbiol ; 15: 1403514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027096

RESUMO

Background: Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that seriously jeopardizes human physical and mental health and reduces quality of life. Intestinal flora is one of the critical areas of exploration in T1DM research. Objective: This study aims to explore the research hotspot and development trend of T1DM and intestinal flora to provide research direction and ideas for researchers. Methods: We used the Web of Science (WOS) Core Collection and searched up to 18 November 2023, for articles on studies of the correlation between T1DM and intestinal flora. CiteSpace, VOSviewers and R package "bibliometrix" were used to conduct this bibliometric analysis. Results: Eventually, 534 documents met the requirements to be included, and as of 18 November 2023, there was an upward trend in the number of publications in the field, with a significant increase in the number of articles published after 2020. In summary, F Susan Wong (UK) was the author with the most publications (21), the USA was the country with the most publications (198), and the State University System of Florida (the United States) was the institution with the most publications (32). The keywords that appeared more frequently were T cells, fecal transplants, and short-chain fatty acids. The results of keywords with the most robust citation bursts suggest that Faecalibacterium prausnitzii and butyrate may become a focus of future research. Conclusion: In the future, intestinal flora will remain a research focus in T1DM. Future research can start from Faecalibacterium prausnitzii and combine T cells, fecal bacteria transplantation, and short-chain fatty acids to explore the mechanism by which intestinal flora affects blood glucose in patients with T1DM, which may provide new ideas for the prevention and treatment of T1DM.

6.
Front Microbiol ; 15: 1431672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015737

RESUMO

Alphaherpesvirus is a widespread pathogen that causes diverse diseases in humans and animals and can severely damage host health. Alphaherpesvirus particles comprise a DNA core, capsid, tegument and envelope; the tegument is located between the nuclear capsid and envelope. According to biochemical and proteomic analyses of alphaherpesvirus particles, the tegument contains at least 24 viral proteins and plays an important role in the alphaherpesvirus life cycle. This article reviews the important role of tegument proteins and their interactions during the viral life cycle to provide a reference and inspiration for understanding alphaherpesvirus infection pathogenesis and identifying new antiviral strategies.

7.
Int J Biol Macromol ; 273(Pt 1): 133012, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866296

RESUMO

The process of dissolving cellulose is a pivotal step in transforming it into functional, value-added materials, necessitating a thorough comprehension of the underlying mechanisms to refine its advanced processing. This article reviews cellulose dissolution using various solvent systems, along with an in-depth exploration of the associated dissolution mechanisms. The efficacy of different solvents, including aqueous solvents, organic solvents, ionic liquids, hybrid ionic liquid/cosolvent systems, and deep eutectic solvents, in dissolving cellulose is scrutinized, and their limitations and advantages are highlighted. In addition, this review methodically outlines the mechanisms at play within these various solvent systems and the factors influencing cellulose solubility. Conclusions drawn highlight the integral roles of the degree of polymerization, crystallinity, particle size, the type and sizes of cations and anions, alkyl chain length, ionic liquid/cosolvent ratio, viscosity, solvent acidity, basicity, and hydrophobic interactions in the dissolution process. This comprehensive review aims to provide valuable insights for researchers investigating biopolymer dissolution in a broader context, thereby paving the way for broader applications and innovations of these solvent systems.


Assuntos
Celulose , Líquidos Iônicos , Solubilidade , Solventes , Celulose/química , Solventes/química , Líquidos Iônicos/química , Viscosidade
8.
Vet Res ; 55(1): 83, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943190

RESUMO

Migratory birds are important vectors for virus transmission, how migratory birds recognize viruses and viruses are sustained in birds is still enigmatic. As an animal model for waterfowl among migratory birds, studying and dissecting the antiviral immunity and viral evasion in duck cells may pave a path to deciphering these puzzles. Here, we studied the mechanism of antiviral autophagy mediated by duck STING in DEF cells. The results collaborated that duck STING could significantly enhance LC3B-II/I turnover, LC3B-EGFP puncta formation, and mCherry/EGFP ratio, indicating that duck STING could induce autophagy. The autophagy induced by duck STING is not affected by shRNA knockdown of ATG5 expression, deletion of the C-terminal tail of STING, or TBK1 inhibitor BX795 treatment, indicating that duck STING activated non-classical selective autophagy is independent of interaction with TBK1, TBK1 phosphorylation, and interferon (IFN) signaling. The STING R235A mutant and Sar1A/B kinase mutant abolished duck STING induced autophagy, suggesting binding with cGAMP and COPII complex mediated transport are the critical prerequisite. Duck STING interacted with LC3B through LIR motifs to induce autophagy, the LIR 4/7 motif mutants of duck STING abolished the interaction with LC3B, and neither activated autophagy nor IFN expression, indicating that duck STING associates with LC3B directed autophagy and dictated innate immunity activation. Finally, we found that duck STING mediated autophagy significantly inhibited duck plague virus (DPV) infection via ubiquitously degraded viral proteins. Our study may shed light on one scenario about the control and evasion of diseases transmitted by migratory birds.


Assuntos
Autofagia , Patos , Transdução de Sinais , Animais , Mardivirus/fisiologia , Interferons/metabolismo , Alphaherpesvirinae/fisiologia , Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologia
9.
Biosens Bioelectron ; 261: 116522, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38924815

RESUMO

Molecular detection of nucleic acid plays an important role in early diagnosis and therapy of disease. Herein, a novel and enhanced electrochemical biosensor was exploited based on target-activated CRISPR/Cas12a system coupling with nanoparticle-labeled covalent organic frameworks (COFs) as signal reporters. Hollow spherical COFs (HCOFs) not only served as the nanocarriers of silver nanoparticles (AgNPs)-DNA conjugates for enhanced signal output but also acted as three-dimensional tracks of CRISPR/Cas12a system to improve the cleavage accessibility and efficiency. The presence of target DNA triggered the trans-cleavage activity of the CRISPR/Cas12a system, which rapidly cleaved the AgNPs-DNA conjugates on HCOFs, resulting in a remarkable decrease of the electrochemical signal. As a proof of concept, the fabricated biosensing platform realized highly sensitive and selective detection of human papillomavirus type 16 (HPV-16) DNA ranging from 100 fM to 1 nM with the detection limit of 57.2 fM. Furthermore, the proposed strategy provided a versatile and high-performance biosensor for the detection of different targets by simple modification of the crRNA protospacer, holding promising applications in disease diagnosis.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA Viral , Técnicas Eletroquímicas , Papillomavirus Humano 16 , Nanopartículas Metálicas , Estruturas Metalorgânicas , Prata , Técnicas Biossensoriais/métodos , Humanos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Prata/química , Estruturas Metalorgânicas/química , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/isolamento & purificação , DNA Viral/análise , DNA Viral/genética , Limite de Detecção
10.
Ultrason Sonochem ; 108: 106958, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889569

RESUMO

Fermented skim milk is an ideal food for consumers such as diabetic and obese patients, but its low-fat content affects its texture and viscosity. In this study, we developed an effective pretreatment method for fermented skim milk using low-frequency ultrasound (US), and investigated the molecular mechanism of the corresponding quality improvement. The skim milk samples were treated by optimal ultrasonication conditions (336 W power for 7 min at 3 °C), which improved the viscosity, water-holding capacity, sensory attributes, texture, and microstructure of fermented skim milk (P < 0.05). Further mechanistic analyses revealed that the US treatment enhanced the exposure of fluorescent amino acids within proteins, facilitating the cross-linking between casein and whey. The increased surface hydrophobicity of fermented milk indicates that the US treatment led to the exposure of hydrophobic amino acid residues inside proteins, contributing to the formation of a denser gel network; the average particle size of milk protein was reduced from 24.85 to 18.06 µm, which also contributed to the development of a softer curd texture. This work is the first attempt to explain the effect of a low-frequency ultrasound treatment on the quality of fermented skim milk and discuss the molecular mechanism of its improvement.

11.
Food Microbiol ; 122: 104563, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839237

RESUMO

Thermosonication (UT) prestress treatments combining with varied fermentation patterns has been revealed as an effective method to regulate post-acidification as exerted by Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii), but sono-biochemical controlling mechanisms remain elusive. This study employed physiological and transcriptomic analysis to explore the response mechanism of L. delbrueckii to UT-induced microstress (600 W, 33 kHz, 10 min). UT stress-induced inhibition of acidification of L. delbrueckii during (post)-fermentation was first confirmed, relying on the UT process parameters such as stress exposure duration and UT power. The significantly enhanced membrane permeability in cells treated by 600 W for 10 min than the microbes stressed by 420 W for 20 min suggested the higher dependence of UT-derived stresses on the treatment durations, relative to the ultrasonic powers. In addition, ultrasonication treatment-induced changes in cell membrane integrity enhanced and/or disrupted permeability of L. delbrueckii, resulting in an imbalance in intracellular conditions associated with corresponding alterations in metabolic behaviors and fermentation efficiencies. UT-prestressed inoculum exhibited a 21.46% decrease in the membrane potential during the lag phase compared to untreated samples, with an intracellular pH of 5.68 ± 0.12, attributed to the lower activities of H+-ATPase and lactate dehydrogenase due to UT stress pretreatments. Comparative transcriptomic analysis revealed that UT prestress influenced the genes related to glycolysis, pyruvate metabolism, fatty acid synthesis, and ABC transport. The genes encoding 3-oxoacyl-[acyl-carrier-protein] reductases I, II, and III, CoA carboxylase, lactate dehydrogenase, pyruvate oxidase, glucose-6-phosphate isomerase, and glycerol-3-phosphate dehydrogenase were downregulated, thus identifying the relevance of the UT microstresses-downregulated absorption and utilization of carbohydrates with the attenuated fatty acid production and energy metabolisms. These findings could contribute to provide a better understanding of the inactivated effects on the post-acidification of L. delbrueckii by ultrasonic pretreatments, thus providing theoretical basis for the targeted optimization of acidification inhibition efficiencies for yogurt products during chilled preservation processes.


Assuntos
Fermentação , Perfilação da Expressão Gênica , Lactobacillus delbrueckii , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/genética , Concentração de Íons de Hidrogênio , Transcriptoma , Sonicação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
12.
Neurosurgery ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860769

RESUMO

BACKGROUND AND OBJECTIVES: This study aimed to investigate the clinical, radiological, pathological features, treatment options, and outcomes of isocitrate dehydrogenase (IDH)-mutant brainstem gliomas (BSG-IDHmut). METHODS: A retrospective analysis of 22 patients diagnosed with BSG-IDHmut and treated at our institution from January 2011 to January 2017 was performed. Their clinical, radiological data, and long-term outcomes were collected and analyzed. RESULTS: The median age of patients was 38.5 years, with a male predominance (63.6%). All patients had IDH1 and TP53 mutations, with noncanonical IDH mutations in 59.1% of cases, 06-methylguanine-DNA methyltransferase promoter methylation in 55.6%, and alpha-thalassemia mental retardation X-linked loss in 63.2%, respectively. Tumors were primarily located in the pontine-medullary oblongata (54.5%) and frequently involved the pontine brachium (50%). Most tumors exhibited ill-defined boundaries (68.2%), no T2-FLAIR mismatch (100%), and no contrast enhancement (86.3%). Two radiological growth patterns were also identified: focal and extensively infiltrative, which were associated with the treatment strategy when tumor recurred. Seven patients (31.8%) received surgery only and 15 (68.2%) surgery plus other therapy. The median overall survival was 124.8 months, with 1-year, 2-year, 5-year, and 10-year survival rates of 81.8%, 68.2%, 54.5%, and 13.6%, respectively. Six patients experienced tumor recurrence, and all retained their radiological growth patterns, with 2 transformed into central nervous system World Health Organization grade 4. CONCLUSION: BSG-IDHmut represents a unique subgroup of brainstem gliomas with distinctive features and more favorable prognosis compared with other brainstem gliomas. Further research is required to better understand the molecular mechanisms and optimize treatment strategies for this rare and complex disease.

13.
Technol Cancer Res Treat ; 23: 15330338241261615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887096

RESUMO

This study aimed to investigate the role of miR-558 in tumor angiogenesis by targeting heparinase (HPSE) in tongue squamous cell carcinoma (TSCC)-derived exosomes. In the present study, the role of exosome miR-558 in angiogenesis in vitro and in vivo was investigated by cell proliferation, migration, tube formation, subcutaneous tumor formation in mice, and in vivo Matrigel plug assay. The target genes of miR-558 were detected by means of dual luciferase assay. It was found that TSCC cells secrete miR-558 into the extracellular environment, with exosome as the carrier. Human umbilical vein endothelial cells (HUVEC) ingested exosomes, which not only increased the expression level of miR-558, but also enhanced their proliferation, migration, and tube formation functions. In vivo Matrigel plug assay demonstrated that TSCC cell-derived exosome miR-558 promoted neovascularization in vivo. Compared with negative control cells, TSCC cells overexpressing miR-558 formed subcutaneous tumors in nude mice, with larger volume, heavier mass, and more vascularization. Dual luciferase assay confirmed that HPSE was the direct target gene regulated by miR-558. HPSE promoted the proliferation, migration, and tube formation of HUVECs, and the knockout of HPSE could downregulate the pro-angiogenic effect of miR-558. In summary, miR-558 in TSCC exosomes promotes the proliferation, migration, and tube formation of HUVECs by targeting HPSE, and enhancing tumor angiogenesis.


Assuntos
Movimento Celular , Proliferação de Células , Exossomos , Regulação Neoplásica da Expressão Gênica , Heparina Liase , MicroRNAs , Neovascularização Patológica , Neoplasias da Língua , Humanos , Animais , MicroRNAs/genética , Exossomos/metabolismo , Exossomos/genética , Neoplasias da Língua/patologia , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Movimento Celular/genética , Linhagem Celular Tumoral , Heparina Liase/metabolismo , Heparina Liase/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Angiogênese
14.
Eur J Med Res ; 29(1): 323, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867262

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a highly lethal cardiovascular disease. The aim of this research is to identify new biomarkers and therapeutic targets for the treatment of such deadly diseases. METHODS: Single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithms were used to identify distinct immune cell infiltration types between AAA and normal abdominal aortas. Single-cell RNA sequencing data were used to analyse the hallmark genes of AAA-associated macrophage cell subsets. Six macrophage-related hub genes were identified through weighted gene co-expression network analysis (WGCNA) and validated for expression in clinical samples and AAA mouse models. We screened potential therapeutic drugs for AAA through online Connectivity Map databases (CMap). A network-based approach was used to explore the relationships between the candidate genes and transcription factors (TFs), lncRNAs, and miRNAs. Additionally, we also identified hub genes that can effectively identify AAA and atherosclerosis (AS) through a variety of machine learning algorithms. RESULTS: We obtained six macrophage hub genes (IL-1B, CXCL1, SOCS3, SLC2A3, G0S2, and CCL3) that can effectively diagnose abdominal aortic aneurysm. The ROC curves and decision curve analysis (DCA) were combined to further confirm the good diagnostic efficacy of the hub genes. Further analysis revealed that the expression of the six hub genes mentioned above was significantly increased in AAA patients and mice. We also constructed TF regulatory networks and competing endogenous RNA networks (ceRNA) to reveal potential mechanisms of disease occurrence. We also obtained two key genes (ZNF652 and UBR5) through a variety of machine learning algorithms, which can effectively distinguish abdominal aortic aneurysm and atherosclerosis. CONCLUSION: Our findings depict the molecular pharmaceutical network in AAA, providing new ideas for effective diagnosis and treatment of diseases.


Assuntos
Aneurisma da Aorta Abdominal , Perfilação da Expressão Gênica , Macrófagos , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/diagnóstico , Humanos , Animais , Macrófagos/metabolismo , Camundongos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Modelos Animais de Doenças , Transcriptoma , Biomarcadores/metabolismo
15.
ACS Appl Mater Interfaces ; 16(24): 31567-31575, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38836291

RESUMO

Solar energy is widely used in photovoltaic power generation as a kind of clean energy. However, the liquid film, frosting, and icing on the photovoltaic module seriously limit the efficiency of photovoltaic power generation. We developed a composite coating (Y6-NanoSH) by combining an in situ photothermal and transparent Y6 organic film with a nanosuperhydrophobic material. The Y6-NanoSH coated glass exhibited excellent optical clarity both indoors and outdoors, indicating that the coating holds great promise in anti-icing applications for photovoltaic panels. The Y6-NanoSH coating absorbs very little visible light but instead absorbs in the near-infrared region, thereby emitting heat. When exposed to sunlight, the Y6-NanoSH coated photovoltaic panel raises its surface temperature, inhibiting the growth and accumulation of ice and frost on its surface. This is achieved through a combination of photothermal emission and superhydrophobic repellency, which promotes the evaporation and rolling away of water droplets. This validates our success in developing a photothermal, transparent, and superhydrophobic coating with excellent anti-icing capabilities, suitable for use on photovoltaic panels, as well as potential applications in car windscreens, transmission lines, curtain walls, and weather radomes.

16.
Environ Sci Technol ; 58(28): 12532-12541, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38940696

RESUMO

While partial nitrification (PN) has the potential to reduce energy for aeration, it has proven to be unstable when treating low-strength wastewater. This study introduces an innovative combined strategy incorporating a low rate of oxygen supply, pH control, and sulfide addition to selectively inhibit nitrite-oxidizing bacteria (NOB). This strategy led to a stable PN in a laboratory-scale membrane aerated biofilm reactor (MABR). Over a period of 260 days, the nitrite accumulation ratio exceeded 60% when treating synthetic sewage containing 50 mg NH4+-N/L. Through in situ activity testing and high-throughput sequencing, the combined strategy led to low levels of nitrite-oxidation activity (<5.5 mg N/m2 h), Nitrospira species (relative abundance <1%), and transcription of nitrite-oxidation genes (undetectable). The addition of sulfide led to simultaneous PN and autotrophic denitrification in the single-stage MABR, resulting in over 60% total inorganic nitrogen removal. Sulfur-based autotrophic denitrification consumed nitrite and inhibited NOB conversion of nitrite to nitrate. The combined strategy has potential to be applied in large-scale sewage treatment and deserves further exploration.


Assuntos
Reatores Biológicos , Desnitrificação , Nitrificação , Sulfetos , Sulfetos/química , Processos Autotróficos , Nitritos/metabolismo , Esgotos , Biofilmes , Águas Residuárias/química
17.
FEBS Lett ; 598(12): 1543-1553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782868

RESUMO

Tumor cells can express the immune checkpoint protein programmed death-1 (PD-1), but how cancer cell-intrinsic PD-1 is regulated in response to cellular stresses remains largely unknown. Here, we uncover a unique mechanism by which the chemotherapy drug doxorubicin (Dox) regulates cancer cell-intrinsic PD-1. Dox upregulates PD-1 mRNA while reducing PD-1 protein levels in tumor cells. Although Dox shortens the PD-1 half-life, it fails to directly induce PD-1 degradation. Instead, we observe that Dox promotes the interaction between peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase (NGLY1) and PD-1, facilitating NGLY1-mediated PD-1 deglycosylation and destabilization. The maintenance of PD-1 sensitizes tumor cells to Dox-mediated antiproliferative effects. Our study unveils a regulatory mechanism of PD-1 in response to Dox and highlights a potential role of cancer cell-intrinsic PD-1 in Dox-mediated antitumor effects.


Assuntos
Doxorrubicina , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Receptor de Morte Celular Programada 1 , Doxorrubicina/farmacologia , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Glicosilação/efeitos dos fármacos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
18.
Phytomedicine ; 130: 155668, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38776739

RESUMO

BACKGROUND: Baoyuan decoction (BYD) has been widely utilized as a traditional prescription for the treatment of various conditions such as coronary heart disease, aplastic anemia, and chronic renal failure. However, its potential efficacy in improving atherosclerosis has not yet been investigated. PURPOSE: Our research aimed to assess the potential of BYD as an inhibitor of atherosclerosis and uncover the underlying mechanism by which it acts on foam cell formation. STUDY DESIGN AND METHODS: High-fat diet-induced ApoE-/- mice were employed to explore the effect of BYD on atherosclerosis. The differential metabolites in feces were identified and analyzed by LC-Qtrap-MS. In addition, we utilized pharmacological inhibition of BYD on foam cell formation induced by oxLDL in THP-1 cells to elucidate the underlying mechanisms specifically in macrophages. RESULTS: The atherosclerotic plaque burden in the aortic sinus of ApoE-/- mice was notably reduced with BYD treatment, despite no significant alterations in plasma lipids. Metabolomic analysis revealed that BYD suppressed the increased levels of peroxidized fatty acids, specifically 9/13-hydroxyoctadecadienoic acid (9/13-HODE), in the feces of mice. As a prominent peroxidized fatty acid found in oxLDL, we confirmed that 9/13-HODE induced the overexpression of CD36 in THP-1 macrophages by upregulating PPARγ. In subsequent experiments, the decreased levels of CD36 triggered by oxLDL were observed after BYD treatment. This decrease occurred through the regulation of the Src/MMK4/JNK pathway, resulting in the suppression of lipid deposition in THP-1 macrophages. CONCLUSIONS: These results illustrate that BYD exhibits potential anti-atherosclerotic effects by inhibiting CD36 expression to prevent foam cell formation.


Assuntos
Aterosclerose , Antígenos CD36 , Medicamentos de Ervas Chinesas , Células Espumosas , Lipoproteínas LDL , Animais , Aterosclerose/tratamento farmacológico , Antígenos CD36/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Masculino , Camundongos , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Dieta Hiperlipídica , Ácidos Graxos , Camundongos Endogâmicos C57BL , Células THP-1 , Placa Aterosclerótica/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Apolipoproteínas E
19.
Anal Chim Acta ; 1311: 342743, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38816160

RESUMO

BACKGROUND: MicroRNA (miRNA) emerges as important cancer biomarker, accurate detection of miRNA plays an essential role in clinical sample analysis and disease diagnosis. However, it remains challenging to realize highly sensitive detection of low-abundance miRNA. Traditional detection methods including northern blot and real-time PCR have realized quantitative miRNA detection. However, these detection methods are involved in sophisticated operation and expensive instruments. Therefore, the development of novel sensing platform with high sensitivity and specificity for miRNA detection is urgently demanded for disease diagnosis. RESULTS: In this work, a novel electrochemical biosensor was constructed for miRNA detection based on target-driven cascade amplified assembly of electroactive covalent organic frameworks (COFs) on tetrahedral DNA nanostructure with multiplex recognition domains (m-TDN). COFs were employed as nanocarriers of electroactive prussian blue (PB) molecules by the "freeze-drying-reduction" method without the use of DNA as gatekeeper, which was simple, mild and efficient. The target-triggered catalytic hairpin assembly (CHA) and glutathione reduction could convert low-abundance miRNA into a large amount of Mn2+. Without the addition of exogenous Mn2+, the dynamically-generated Mn2+-powered DNAzyme cleavage process induced abundant PB-COFs probe assembled on the four recognition domains of m-TDN, resulting in significantly signal output. Using miRNA-182-5p as the model target, the proposed electrochemical biosensor achieved ultrasensitive detection of miRNA-182-5p in the range of 10 fM-100 nM with a detection limit of 2.5 fM. SIGNIFICANCE AND NOVELTY: Taking advantages of PB-COFs probe as the enhanced signal labels, the integration of CHA, Mn2+-powered DNAzyme and m-TDN amplification strategy significantly improved the sensitivity and specificity of the biosensor. The designed sensing platform was capable of miRNA detection in complex samples, which provided a new idea for biomarker detection, holding promising potential in clinical diagnosis and disease screening.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA , Técnicas Eletroquímicas , Estruturas Metalorgânicas , MicroRNAs , Nanoestruturas , MicroRNAs/análise , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Nanoestruturas/química , DNA/química , Humanos , DNA Catalítico/química , DNA Catalítico/metabolismo , Limite de Detecção , Ferrocianetos/química
20.
Int J Biol Macromol ; 271(Pt 1): 132397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821787

RESUMO

The thickening and gelling mechanism of high-methoxyl pectins (HMPs) with different degree of esterification (DE) values (60.6 %, 66.1 %, and 72.4 %) synergistically affected by calcium ion (Ca2+) and sucrose was investigated using several technical methods. Rheological measurements, including steady-shear flow, thixotropy and dynamic viscoelasticity tests, texture analysis, water-holding capacity (WHC), thermal analyses (TG), and microstructure observation (TEM), were all systemically conducted. The results showed that the main thickening and gelling mechanism of Ca2+ on different HMPs was complex and the presence of sucrose had a synergistic effect on structure formation in HMP systems. Ca2+ was not always conducive to structure formation, and excessive Ca2+ addition may hinder structure formation. HMP systems with lower DE values had higher gel strengths due to the presence of more binding domains. The results of the texture properties, WHC, and thermal characteristics coincided with those obtained from the rheological measurements, which reflect the variations in HMPs affected by Ca2+ and DE. All of these results showed that Ca2+ addition at an appropriate concentration in the presence of sucrose favors HMP gelation even in the absence of acid. The results obtained here are expected to broaden the application of HMPs in acid-free gel food products.


Assuntos
Cálcio , Malus , Pectinas , Reologia , Sacarose , Pectinas/química , Malus/química , Sacarose/química , Cálcio/química , Viscosidade , Géis/química , Esterificação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...