Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Org Chem ; 89(5): 3605-3611, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364322

RESUMO

D-A type axially chiral biphenyl luminescent molecules are directly constructed through ingenious functionalization of the octahydro-binaphthol skeleton without optical resolution. The circularly polarized organic light-emitting diodes based on them display remarkable circularly polarized electroluminescence emission, a high luminance of >10 000 cd m-2, a maximum external quantum efficiency of 6.6%, and an extremely low-efficiency roll-off. This work provides a universal strategy for developing efficient and diverse axially chiral biphenyl emitters.

2.
IEEE Trans Cybern ; PP2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345963

RESUMO

Asymptotic observability of distributed Boolean networks (DBNs) is studied in this article. Via a parallel extension method, asymptotic observability of the original system is converted to reachability at a fixed point of the extended system. Based on the structure matrix of the extended system, a necessary and sufficient condition is presented for asymptotic observability. Further, for unobservable systems, mode-dependent pinning control is first introduced and applied to achieve asymptotic observability, including the selections of pinning nodes, the design of output feedback controls, and the adding approaches. Then, a set of matrices is defined for the construction of the desired structure matrix. Based on it, a necessary condition is given to guarantee the solvability of the corresponding output feedback controls and the adding approaches. Finally, a numerical example is presented to show the effectiveness of the obtained results.

3.
IEEE Trans Cybern ; 54(3): 1947-1959, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37610889

RESUMO

The neural network-based adaptive backstepping method is an effective tool to solve the cooperative tracking problem for nonlinear multiagent systems (MASs). However, this method cannot be directly extended to the case without continuous communication. It is because the discontinuous communication results in discontinuous signals in this case, the standard backstepping method is inapplicable. To solve this problem, a hierarchical design scheme that involves distributed cooperative estimators and neural network-based decentralized tracking controllers is proposed. By introducing a dynamic event-triggered mechanism, cooperative intermediate parameter estimators are first designed to estimate the unknown parameters of the leader. By using the interpolation polynomial method, these estimators are extended to smooth estimators with high-order derivatives to guarantee that the backstepping method is applicable. Based on the state of the smooth estimators, a backstepping-based decentralized neural network tracking controller is designed. It is shown that the tracking errors are asymptotically convergent and all the signals in the closed-loop systems are bounded. Compared with the existing cooperative tracking results for nonlinear MASs with event-triggered communication, a more general class of MASs is considered in this article and a better performance in terms of asymptotic tracking is achieved. Finally, a simulation example is given to show the effectiveness of our developed method.

4.
Angew Chem Int Ed Engl ; 63(7): e202318742, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38153344

RESUMO

Recently, boron (B)/nitrogen (N)-embedded polycyclic aromatic hydrocarbons (PAHs), characterized by multiple resonances (MR), have attracted significant attention owing to their remarkable features of efficient narrowband emissions with small full width at half maxima (FWHMs). However, developing ultra-narrowband pure-green emitters that comply with the Broadcast Service Television 2020 (BT2020) standard remains challenging. Precise regulation of the MR distribution regions allows simultaneously achieving the emission maximum, FWHM value, and spectral shape that satisfy the BT2020 standard. The proof-of-concept molecule TPABO-DICz exhibited ultrapure green emission with a dominant peak at 515 nm, an extremely small FWHM of 17 nm, and Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.76). The corresponding bottom-emitting organic light-emitting diode (OLED) exhibited a remarkably high CIEy value (0.74) and maximum external quantum efficiency (25.8 %). Notably, the top-emitting OLED achieved nearly BT2020 green color (CIE: 0.14, 0.79) and exhibited a state-of-the-art maximum current efficiency of 226.4 cd A-1 , thus fully confirming the effectiveness of the above strategy.

5.
Org Lett ; 25(50): 9030-9035, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38019556

RESUMO

Herein, a base metal-enabled chemodivergent cyclization of propargylamines for the atom-economic construction of nitrogen heterocycles has been developed. Due to the different modes of activation of metal to propargylamine, copper-catalyzed 6-endo-dig cyclization generates functionalized 2-substitued quinoline-4-carboxylates, while iron-promoted cascade amino Claisen rearrangement, aromatization, and aza-Michael addition afford diverse 2-substituted indole-3-carboxylate derivatives. Excellent selectivity, broad functional group tolerance, mild conditions, and flexible late-stage functionalization illustrate the high efficiency and synthetic utility of this chemodivergent reaction.

6.
IEEE Trans Cybern ; PP2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824312

RESUMO

In this article, a synchronization control method is studied for coupled neural networks (CNNs) with constant time delay using sampled-data information. A distributed control protocol relying on the sampled-data information of neighboring nodes is proposed. Lyapunov functional is constructed to analyze the synchronization of CNNs with constant time delay. Using Park's integral inequality and improved free-weight matrix integral inequality, sufficient conditions are provided for CNNs to achieve synchronization with less conservatism. In addition, the maximum sampling interval is determined by transforming the sufficient conditions into an optimization problem, and an aperiodic sampling control technique is implemented to reduce the communication energy load. Finally, numerical simulations are provided to demonstrate that the proposed method is capable of achieving synchronization.

7.
Org Lett ; 25(42): 7595-7600, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37830918

RESUMO

O-Phosphination of α-dicarbonyls via sequential in situ formation of a Kukhtin-Ramirez adduct and a P(NMe2)3-catalyzed process has been exploited for the synthesis of α-phosphoryloxy carbonyls. A range of P(O)-H derivatives, including diarylphosphine oxides, arylphosphinates, and phosphinates, are competent candidates to be introduced into the α-dicarbonyls in this transformation, and various α-phosphoryloxy carbonyls are obtained. This approach possesses advantages of mild conditions, simple operations, atom economy, high efficiency, and gram-scale synthesis, which make it promising in the synthesis toolbox.

8.
Molecules ; 28(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687088

RESUMO

Developing new organic reactions with excellent atom economy and high selectivity is significant and urgent. Herein, by ingeniously regulating the reaction conditions, highly selective transformations of propargylamines have been successfully implemented. The palladium-catalyzed cyclization of propargylamines generates a series of functionalized quinoline heterocycles, while the base-promoted isomerization of propargylamines affords diverse 1-azadienes. Both reactions have good functional group tolerance, mild conditions, excellent atom economy and high yields of up to 93%. More importantly, these quinoline heterocycles and 1-azadienes could be flexibly transformed into valuable compounds, illustrating the validity and practicability of the propargylamine-based highly selective reactions.

9.
Artigo em Inglês | MEDLINE | ID: mdl-37561622

RESUMO

This work investigates the protocol-based synchronization of inertial neural networks (INNs) with stochastic semi-Markovian jumping parameters and image encryption application. The semi-Markovian jumping process is adopted to characterize INNs under sudden complex changes. To conserve the limited available network bandwidth, an adaptive event-driven protocol (AEDP) is developed in the corresponding semi-Markovian jumping INNs (S-MJINNs), which not only reduces the amount of data transmission but also avoids the Zeno phenomenon. The objective is to construct an adaptive event-driven controller so that the drive and response systems maintain synchronous relationships. Based on the appropriate Lyapunov functional, integral inequality, and free weighting matrix, novel criteria are derived to realize the synchronization. Moreover, the desired adaptive event-driven controller is designed under a semi-Markovian jumping process. The proposed method is demonstrated through a numerical example and an image encryption process.

10.
ISA Trans ; 142: 188-197, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517950

RESUMO

This paper is devoted to dealing with the problem of global attitude synchronization for quaternion-based multiple rigid bodies, regardless of the general directed topologies of networks and arbitrary initial orientations of rigid bodies. A novel canonical quaternion is constructed to represent all physical attitudes of rigid bodies such that the pseudo-synchronization of their quaternion representations (namely, the quaternions' vector parts of all rigid bodies reach agreement on some identical value, whereas their scalar parts do not) can be precluded. Moreover, to reduce unnecessary communication requirements of rigid bodies, a hybrid triggering mechanism involving both the time regulation and neighbors' non-real-time information is proposed, with which a distributed protocol is developed by leveraging the constructed canonical quaternion. It is shown that the presented protocol for rigid bodies over directed networks can simultaneously realize the global attitude synchronization and naturally exclude the Zeno behavior. In addition, these observations are also validated via the application of our hybrid triggering protocol to networked spacecraft.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37030822

RESUMO

Enabled by the advances in communication networks, computational units, and control systems, cyber-physical power systems (CPPSs) are anticipated to be complex and smart systems in which a large amount of data are generated, exchanged, and processed for various purposes. Due to these strong interactions, CPPSs will introduce new security vulnerabilities. To ensure secure operation and control of CPPSs, it is essential to detect the locations of the attacked measurements and remove the state bias caused by malicious cyber-attacks such as false data inject attack, jamming attack, denial of service attack, or hybrid attack. Accordingly, this article makes the first contribution concerning the representation-learning-based convolutional neural network (RL-CNN) for intelligent attack localization and system recovery of CPPSs. In the proposed method, the cyber-attacks' locational detection problem is formulated as a multilabel classification problem for CPPSs. An RL-CNN is originally adopted as the multilabel classifier to explore and exploit the implicit information of measurements. By comparing with previous multilabel classifiers, the RL-CNN improves the performance of attack localization for complex CPPSs. Then, to automatically filter out the cyber-attacks for system recovery, a mean-squared estimator is used to handle the difficulty in state estimation with the removal of contaminated measurements. In this scheme, prior knowledge of the system state is obtained based on the outputs of the stochastic power flow or historical measurements. The extensive simulation results in three IEEE bus systems show that the proposed method is able to provide high accuracy for attack localization and perform automatic attack filtering for system recovery under various cyber-attacks.

12.
IEEE Trans Cybern ; PP2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027284

RESUMO

Approximation models play a crucial role in model-based methods, as they enhance both accuracy and computational efficiency. This article studies distributed and asynchronous discretized models to approach continuous-time nonlinear systems. The considered continuous-time system consists of some distributed but physically coupled nonlinear subsystems that exchange information. We propose two Lebesgue approximation models (LAMs): 1) the unconditionally triggered LAM (CT-LAM) and 2) the CT-LAM. In both approaches, a specific LAM approximates an individual subsystem. The iteration of each LAM is triggered by either itself or its neighbors. The collection of different LAMs executing asynchronously together form the approximation of the overall distributed continuous-time system. The aperiodic nature of LAMs allows for a reduction in the number of iterations in the approximation process, particularly when the system has slow dynamics. The difference between the unconditionally and CT-LAMs is that the latter checks an "importance" condition, further reducing the computational effort in individual LAMs. Furthermore, the proposed LAMs are analyzed by constructing a distributed event-triggered system which is proved to have the same state trajectories as the LAMs with linear interpolation. Through this specific event-triggered system, we derive conditions on the quantization sizes in LAMs to ensure asymptotic stability of the LAMs, boundedness of the state errors, and prevention of Zeno behavior. Finally, simulations are carried out on a quarter-car suspension system to show the advantage and efficiency of the proposed approaches.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37028294

RESUMO

In this article, we consider the cooperative tracking problem for a class of nonlinear multiagent systems (MASs) with unknown dynamics under denial-of-service (DoS) attacks. To solve such a problem, a hierarchical cooperative resilient learning method, which involves a distributed resilient observer and a decentralized learning controller, is introduced in this article. Due to the existence of communication layers in the hierarchical control architecture, it may lead to communication delays and DoS attacks. Motivated by this consideration, a resilient model-free adaptive control (MFAC) method is developed to withstand the influence of communication delays and DoS attacks. First, a virtual reference signal is designed for each agent to estimate the time-varying reference signal under DoS attacks. To facilitate the tracking of each agent, the virtual reference signal is discretized. Then, a decentralized MFAC algorithm is designed for each agent such that each agent can track the reference signal by only using the obtained local information. Finally, a simulation example is proposed to verify the effectiveness of the developed method.

14.
IEEE Trans Cybern ; 53(12): 7868-7880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37022031

RESUMO

This article studies the optimized fuzzy prescribed performance control problem for nonlinear nonstrict-feedback systems under denial-of-service (DoS) attacks. A fuzzy estimator is delicately designed to model the immeasurable system states in the presence of DoS attacks. To achieve the preset tracking performance, a simper prescribed performance error transformation is constructed considering the characteristics of DoS attacks, which helps obtain a novel Hamilton-Jacobi-Bellman equation to derive the optimized prescribed performance controller. Furthermore, the fuzzy-logic system, combined with the reinforcement learning (RL) technique, is employed to approximate the unknown nonlinearity existing in the prescribed performance controller design process. An optimized adaptive fuzzy security control law is then proposed for the considered nonlinear nonstrict-feedback systems subject to DoS attacks. Through the Lyapunov stability analysis, the tracking error is proved to approach the predefined region by the preset finite time, even in the presence of DoS attacks. Meanwhile, the consumed control resources are minimized due to the RL-based optimized algorithm. Finally, an actual example with comparisons verifies the effectiveness of the proposed control algorithm.

15.
IEEE Trans Cybern ; 53(5): 2944-2954, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34847051

RESUMO

In this article, the l1 -induced performance of the stochastic switched Boolean control network (BCN) is investigated. The switched signal is considered to follow a time-varying probability distribution, the switching of which is considered to have a random dwell time. The asynchronous state feedback control (SFC) is studied to achieve the control objective. This kind of control can avoid the failure of the control due to the inconsistency between the system mode and the control mode, so the results obtained are more general. Using the semitensor product of matrices, the algebraic form of the considered BCN is represented. Under this framework, sufficient conditions are obtained to ensure that the closed-loop system is stochastic stabilized with a prescribed l1 -induced performance level γ . Parameters can be solved by inequalities. In addition, when the dwell time converges to infinity, the probability distribution of the switched signal becomes fixed. Necessary and sufficient conditions are presented to ensure the stabilization of the closed system under asynchronous SFC as well as the design of the asynchronous SFC. Then, sufficient condition is obtained for the prescribed l1 -induced performance level. Examples are presented to show the effectiveness of the obtained results.

16.
IEEE Trans Cybern ; 53(1): 151-160, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34236989

RESUMO

This article considers the security-based passivity problem for a class of discrete-time Markov jump systems in the presence of deception attacks, where the deception attacks aim to change the transmitted signal. Considering the impact of deception attacks on network disruption, it causes the existence of time-varying delays in signal transmission inevitably, which makes the controlled system and the controller work asynchronously. The asynchronous control method is employed to overcome the nonsynchronous phenomenon between the system mode and controller mode. On the other hand, to reduce the frequency of data transmission, a resilient asynchronous event-triggered control scheme taking deception attacks into account is designed to save communication resources, and the proposed controller can cover some existing ones as special examples. Moreover, different triggering conditions corresponding to different jumping modes are developed to decide whether state signals should be transferred. A new stability criterion is derived to ensure the passivity of the resultant system although there exist deception attacks. Finally, a simulation example is given to verify the theoretical analysis.

17.
IEEE Trans Neural Netw Learn Syst ; 34(3): 1146-1155, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34428158

RESUMO

This article addresses the distributed model-free adaptive control (DMFAC) problem for learning nonlinear multiagent systems (MASs) subjected to denial-of-service (DoS) attacks. An improved dynamic linearization method is proposed to obtain an equivalent linear data model for learning systems. To alleviate the influence of DoS attacks, an attack compensation mechanism is developed. Based on the equivalent linear data model and the attack compensation mechanism, a novel learning-based DMFAC algorithm is developed to resist DoS attacks, which provides a unified framework to solve the leaderless consensus control, the leader-following consensus control, and the containment control problems. Finally, simulation examples are shown to illustrate the effectiveness of the developed DMFAC algorithm.

18.
IEEE Trans Cybern ; 53(2): 779-792, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35412996

RESUMO

This article investigates the event-triggered distributed average tracking (ETDAT) control problems for the Lipschitz-type nonlinear multiagent systems with bounded time-varying reference signals. By using the state-dependent gain design approach and event-triggered mechanism, two types of ETDAT algorithms called: 1) static and 2) adaptive-gain ETDAT algorithms are developed. It is the first time to introduce the event-triggered strategy into DAT control algorithms and investigate the ETDAT problem for multiagent systems with Lipschitz nonlinearities, which is more practical in real physical systems and can better meet the needs of practical engineering applications. Besides, the adaptive-gain ETDAT algorithms do not need any global information of the network topology and are fully distributed. Finally, a simulation example of the Watts-Strogatz small-world network is presented to illustrate the effectiveness of the adaptive-gain ETDAT algorithms.

19.
IEEE Trans Neural Netw Learn Syst ; 34(12): 9795-9805, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35349455

RESUMO

This article investigates the asynchronous proportional-integral observer (PIO) design issue for singularly perturbed complex networks (SPCNs) subject to cyberattacks. The switching topology of SPCNs is regulated by a nonhomogeneous Markov switching process, whose time-varying transition probabilities are polytope structured. Besides, the multiple scalar Winner processes are applied to character the stochastic disturbances of the inner linking strengths. Two mutually independent Bernoulli stochastic variables are exploited to characterize the random occurrences of cyberattacks. In a practical viewpoint, by resorting to the hidden nonhomogeneous Markov model, an asynchronous PIO is formulated. Under such a framework, by applying the Lyapunov theory, sufficient conditions are established such that the augmented dynamic is mean-square exponentially ultimately bounded. Finally, the effectiveness of the theoretical results is verified by two numerical simulations.

20.
IEEE Trans Cybern ; 53(11): 7095-7104, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35767506

RESUMO

In this article, we address the asynchronous H∞ control problem of a class of hidden Markov jump systems (HMJSs) subject to actuator saturation in the continuous-time domain. A bunch of convex hulls is utilized to represent the saturated nonlinearity. Considering that there is an asynchronous mode mismatch between the system and the controller, we establish a hidden Markov model (HMM) to simulate the situation. By means of the Lyapunov theory, sufficient conditions are presented to ensure that the resultant closed-loop HMJS is stochastically mean square stable within the domain of attraction with a prescribed H∞ performance index. Furthermore, the state feedback gain matrix and the estimation of the domain of attraction are given by solving an optimization problem, which is constructed via linear matrix inequality (LMI) techniques. Finally, the reliability and validity of the derived results are examined by a numerical example.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...