Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 50(30): 10515-10523, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34259288

RESUMO

SnTe is an emerging IV-VI metal chalcogenide, but its low Seebeck coefficient and high thermal conductivity mainly originating from the high hole concentration limit its thermoelectric performance. In this work, an amorphous carbon core-shell-coated PbTe nanostructure prepared by a "bottom-up" method is first incorporated into the Sn1-ySbyTe matrix to enhance the thermoelectric performance of SnTe. The square-like PbTe nanoparticles maintain their original cubic morphology and do not grow up obviously after the SPS process due to the coating of the C layer, bringing about the formation of nanopores locally, while Sb alloying induces Sb point defects and Sb-rich precipitates. All these unique hierarchical microstructures finally lead to an ultralow lattice thermal conductivity (∼0.48 W-1 m-1 K-1) approaching amorphous limits (∼0.40 W-1 m-1 K-1). In addition, the incorporation of PbTe@C core-shell nanostructures decreases the carrier mobility obviously with a slight loss in carrier concentration, resulting in the deterioration of electrical properties to a certain extent. As a result, a peak thermoelectric figure of merit (ZT) of 1.07 is achieved for Sn0.89Sb0.11Te-5%PbTe@C at 873 K, which is approximately 154.76% higher than that of pristine SnTe. This work provides a new strategy to enhance the thermoelectric performance of SnTe and also offers a new insight into other related thermoelectric systems.

2.
ACS Appl Mater Interfaces ; 12(19): 21863-21870, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32314903

RESUMO

Herein, a series of (Sn1.06Te)1-x-(InSb)x (x = 0, 0.025, 0.05, 0.075) samples are fabricated, and their thermoelectric performances are studied. The all-scale structure defects containing the atomic-scale In doping defects, the nanoscale Sb precipitates, and the mesoscale grain boundary scatter phonons collectively in a wide range of frequencies to give the ultralow lattice thermal conductivity. Concurrently, the incorporation of InSb decreases carrier concentration with marginal loss in carrier mobility, resulting in a little variation of electrical properties over a wide temperature range. The significantly decreased thermal conductivity and the preserved high power factor lead to a maximum ZT value of ∼0.84 at 823 K in the (Sn1.06Te)0.95(InSb)0.05 sample. This strategy of rapidly constructing all-scale structure defects could be applied to other thermoelectric systems to enhance thermoelectric performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...