Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961034

RESUMO

Triple-negative breast cancer (TNBC) is characterized by a grim prognosis and numerous challenges. The objective of our study was to examine the role of thymidylate synthase (TYMS) in TNBC and its impact on ferroptosis. The expression of TYMS was analyzed in databases, along with its prognostic correlation. TYMS positive expression was identified through immunohistochemistry (IHC), while real-time quantitative PCR (qRTPCR) was employed to measure TYMS mRNA levels in various cell lines. Western blotting was utilized to assess protein expression. Cell proliferation, mobility, apoptosis, and reactive oxygen species (ROS) levels were evaluated using CCK8, wound scratch healing assay, transwell assay, and flow cytometry, respectively. Additionally, a tumor xenograft model was established in BALB/c nude mice for further investigation. Tumor volume and weight were measured, and histopathological analysis using hematoxylin and eosin (H&E) staining was conducted to assess tumor tissue changes. IHC staining was employed to detect the expression of Ki67 in tumor tissues. High expression of TYMS was observed in TNBC and was found to be correlated with poor prognosis in patients. Among various cell lines, TYMS expression was highest in BT549 cells. Knockdown of TYMS resulted in suppression of cell proliferation and mobility, as well as promotion of apoptosis. Furthermore, knockdown of TYMS led to increased accumulation of ROS and Fe2+ levels, along with upregulation of ACLS4 expression and downregulation of glutathione peroxidase 4 (GPX4) expression. In vivo studies showed that knockdown of TYMS inhibited tumor growth. Additionally, knockdown of TYMS was associated with inhibition of mTOR, p-PI3K, and p-Akt expression. Our research showed that the knockdown of TYMS suppressed the TNBC progression by inhibited cells proliferation via ferroptosis. Its underlying mechanism is related to the PI3K /Akt pathway. Our study provides a novel sight for the suppression effect of TYMS on TNBC.

2.
Appl Microbiol Biotechnol ; 108(1): 399, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951177

RESUMO

Dehydroepiandrosterone (DHEA) has a promising market due to its capacity to regulate human hormone levels as well as preventing and treating various diseases. We have established a chemical esterification coupled biocatalytic-based scheme by lipase-catalyzed 4-androstene-3,17-dione (4-AD) hydrolysis to obtain the intermediate product 5-androstene-3,17-dione (5-AD), which was then asymmetrically reduced by a ketoreductase from Sphingomonas wittichii (SwiKR). Co-enzyme required for KR is regenerated by a glucose dehydrogenase (GDH) from Bacillus subtilis. This scheme is more environmentally friendly and more efficient than the current DHEA synthesis pathway. However, a significant amount of 4-AD as by-product was detected during the catalytic process. Focused on the control of by-products, we investigated the source of 4-AD and identified that it is mainly derived from the isomerization activity of SwiKR and GDH. Increasing the proportion of glucose in the catalytic system as well as optimizing the catalytic conditions drastically reduced 4-AD from 24.7 to 6.5% of total substrate amount, and the final yield of DHEA achieved 40.1 g/L. Furthermore, this is the first time that both SwiKR and GDH have been proved to be promiscuous enzymes with dehydrogenase and ketosteroid isomerase (KSI) activities, expanding knowledge of the substrate diversity of the short-chain dehydrogenase family enzymes. KEY POINTS: • A strategy of coupling lipase, ketoreductase, and glucose dehydrogenase in producing DHEA from 4-AD • Both SwiKR and GDH are identified with ketosteroid isomerase activity. • Development of catalytic strategy to control by-product and achieve highly selective DHEA production.


Assuntos
Desidroepiandrosterona , Lipase , Sphingomonas , Desidroepiandrosterona/metabolismo , Lipase/metabolismo , Sphingomonas/enzimologia , Sphingomonas/metabolismo , Biocatálise , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Glucose 1-Desidrogenase/metabolismo , Glucose 1-Desidrogenase/genética , Androstenodiona/metabolismo , Androstenodiona/biossíntese , Hidrólise
3.
BMC Cardiovasc Disord ; 23(1): 220, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118659

RESUMO

BACKGROUND: Acute coronary syndrome(ACS) is the leading cause of mortality and disability worldwide. Immune response has been confirmed to play a vital role in the occurrence and development of ACS. The objective of this prospective, multicenter, observational study is to define immune response and their relationship to the occurrence and progressive of ACS. METHODS: This is a multicenter, prospective, observational longitudinal cohort study. The primary outcome is the incidence of major adverse cardiovascular events (MACE) including in-stent restenosis, severe ventricular arrhythmia, heart failure, recurrent angina pectoris, and sudden cardiac death, and stroke one year later after ACS. Demographic characteristics, clinical data, treatments, and outcomes are collected by local investigators. Furthermore, freshly processed samples will be stained and assessed by flow cytometry. The expression of S100A4, CD47, SIRPα and Tim-3 on monocytes, macrophages and T cells in ACS patients were collected. FOLLOW-UP: during hospitalization, 3, 6 and 12 months after discharge. DISCUSSION: It is expected that this study will reveal the possible targets to improve the prognosis or prevent from occurrence of MACE in ACS patients. Since it's a multicenter study, the enrollment rate of participants will be accelerated and it can ensure that the collected data are more symbolic and improve the richness and credibility of the test basis. ETHICS AND DISSEMINATION: This study has been registered in Chinese Clinical Trial Registry Center. Ethical approval was obtained from the Affiliated Hospital of Guizhou Medical University. The dissemination will occur through the publication of articles in international peer-reviewed journals. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2200066382.


Assuntos
Síndrome Coronariana Aguda , Humanos , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/terapia , Síndrome Coronariana Aguda/epidemiologia , Estudos Prospectivos , Prognóstico , Monócitos , Estudos Longitudinais , Linfócitos T , Estudos de Coortes , Macrófagos , Estudos Observacionais como Assunto , Estudos Multicêntricos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...