Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119769, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838859

RESUMO

OBJECTIVE: Intervertebral disc degeneration (IVDD) is the leading cause of lower back pain (LBP). ß-arrestin 1 (ARRB1) is a multifunctional protein that regulates numerous pathological processes. The aim of this study was to investigate the role of ARRB1 in IVDD. METHODS: The expression of ARRB1 in nucleus pulposus (NP) of rats with IVDD was assayed. Next, rat nucleus pulposus cells (NPCs) were infected with lentiviruses containing shArrb1 (LV-shArrb1) and overexpressing Arrb1 (LV-oeArrb1). The roles of Arrb1 in serum-deprived NPCs were investigated by measuring apoptosis, extracellular matrix degradation, and autophagic flux. For experiments in vivo, LV-oeArrb1 lentivirus was injected into the NP tissues of IVDD rats to evaluate the effects of Arrb1 overexpression on NP. RESULTS: In the NP tissues of IVDD rats, ARRB1 and cleaved caspase-3 expression increased, and the ratio of LC3II/LC3I protein expression was upregulated. Arrb1 knockdown aggravated extracellular matrix degradation, cellular apoptosis, and impairment of autophagic flux in rat NPCs under serum-deprived conditions, whereas Arrb1 overexpression significantly reversed these effects. ARRB1 interacted with Beclin 1, and Arrb1 knockdown suppressed the formation of the Beclin1-PIK3C3 core complex. The autophagy inhibitor 3-methyladenine (3-MA) offset the protective effects of Arrb1 overexpression in serum-deprived NPCs. Furthermore, Arrb1 overexpression inhibited apoptosis and extracellular matrix degradation, promoted autophagy in NP, and delayed the development of IVDD in rats. CONCLUSION: ARRB1 prevents extracellular matrix degradation and apoptosis of NPCs by upregulating autophagy and ameliorating IVDD progression, presenting an innovative strategy for the treatment of IVDD.

2.
Anal Chim Acta ; 1309: 342677, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772666

RESUMO

BACKGROUND: Rapid and sensitive detection for acetamiprid, a kind of widely used neonicotinoid insecticide, is very meaningful for the development of modern agriculture and the protection of human health. Highly stable electrochemiluminescence (ECL) materials are one of the key factors in ECL sensing technology. ECL materials prepared by porous materials (e.g., MOFs) coated with chromophores have been used for ECL sensing detection, but these materials have poor stability because the chromophores escape when they are in aqueous solution. Therefore, the development of highly stable ECL materials is of great significance to improve the sensitivity of ECL sensing technology. RESULTS: In this work, by combining etched metal-organic frameworks (E-UIO-66-NH2) as carrier with Tris(4,4'-dicarboxylic acid-2,2'-bipyridine)Ru(II) chloride (Ru(dcbpy)32+) as signal probe via amide bonds, highly stable nanocomposites (E-UIO-66-NH2-Ru) with excellent ECL performance were firstly prepared. Then, using MoS2 loaded with AuNPs as substrate material and co-reactant promoter, a signal off-on-off ECL aptamer sensor was prepared for sensitive detection of acetamiprid. Due to the excellent catalytic activity of E-UIO-66-NH2-Ru and MoS2@Au towards K2S2O8, the ECL signals can be enhanced by multiple signal enhancement pathways, the prepared ECL aptamer sensor could achieve sensitive detection of acetamiprid in the linear range of 10-13 to10-7 mol L-1, with the limit of detection (LOD) of 2.78ⅹ10-15 mol L-1 (S/N = 3). After the evaluation of actual sample testing, this sensing platform was proven to be an effective method for the detection of acetamiprid in food and agricultural products. SIGNIFICANCE AND NOVELTY: The E-UIO-66-NH2-Ru prepared by linking Ru(dcbpy)32+ to E-UIO-66-NH2 via amide bonding has very high stability. The synergistic catalytic effect of MoS2 and AuNPs enhanced the ECL signal. By exploring the sensing mechanism and evaluating the actual sample tests, the proposed signal "on-off" ECL sensing strategy was proved to be an effective and excellent ECL sensing method for sensitive and stable detection of acetamiprid.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Eletroquímicas , Medições Luminescentes , Estruturas Metalorgânicas , Neonicotinoides , Neonicotinoides/análise , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Medições Luminescentes/métodos , Estruturas Metalorgânicas/química , Rutênio/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Complexos de Coordenação/química , Inseticidas/análise
3.
Hum Cell ; 37(3): 675-688, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546949

RESUMO

Neurogenic intermittent claudication (NIC), a classic symptom of lumbar spinal stenosis (LSS), is associated with neuronal apoptosis. To explore the novel therapeutic target of NIC treatment, we constructed the rat model of NIC by cauda equina compression (CEC) method and collected dorsal root ganglion (DRG) tissues, a region responsible for sensory and motor function, for mRNA sequencing. Bioinformatic analysis of mRNA sequencing indicated that upregulated metallothionein 2A (MT2A), an apoptosis-regulating gene belonging to the metallothionein family, might participate in NIC progression. Activated p38 MAPK mediated motor dysfunction following LSS and it was also found in DRG tissues of rats with NIC. Therefore, we supposed that MT2A might affect NIC progression by regulating p38 MAPK pathway. Then the rat model of NIC was used to explore the exact role of MT2A. Rats at day 7 post-CEC exhibited poorer motor function and had two-fold MT2A expression in DRG tissues compared with rats with sham operation. Co-localization analysis showed that MT2A was highly expressed in neurons, but not in microglia or astrocytes. Subsequently, neurons isolated from DRG tissues of rats were exposed to hypoxia condition (3% O2, 92% N2, 5% CO2) to induce cell damage. Gain of MT2A function in neurons was performed by lentivirus-mediated overexpression. MT2A overexpression inhibited apoptosis by inactivating p38 MAPK in hypoxia-exposed neurons. Our findings indicated that high MT2A expression was related to NIC progression, and MT2A overexpression protected against NIC through inhibiting activated p38 MAPK-mediated neuronal apoptosis in DRG tissues.


Assuntos
Claudicação Intermitente , Proteínas Quinases p38 Ativadas por Mitógeno , Ratos , Animais , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Apoptose/genética , Neurônios/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Hipóxia , RNA Mensageiro
4.
Life Sci ; 336: 122282, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008209

RESUMO

As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor trkB , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Sistema Nervoso Central/metabolismo , Neurônios/metabolismo
5.
Neural Regen Res ; 18(11): 2489-2496, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282481

RESUMO

DNA methylation is a critical epigenetic regulator in the occurrence and development of diseases and is closely related to various functional responses in relation to spinal cord injury. To investigate the role of DNA methylation in spinal cord injury, we constructed a library with reduced-representation bisulfite sequencing data obtained at various time points (day 0-42) after spinal cord injury in mice. Global DNA methylation levels, specifically non-CpG (CHG and CHH) methylation levels, decreased modestly following spinal cord injury. Stages post-spinal cord injury were classified as early (day 0-3), intermediate (day 7-14), and late (day 28-42) based on similarity and hierarchical clustering of global DNA methylation patterns. The non-CpG methylation level, which included CHG and CHH methylation levels, was markedly reduced despite accounting for a minor proportion of total methylation abundance. At multiple genomic sites, including the 5' untranslated regions, promoter, exon, intron, and 3' untranslated regions, the non-CpG methylation level was markedly decreased following spinal cord injury, whereas the CpG methylation level remained unchanged at these locations. Approximately one-half of the differentially methylated regions were located in intergenic areas; the other differentially methylated regions in both CpG and non-CpG regions were clustered in intron regions, where the DNA methylation level was highest. The function of genes associated with differentially methylated regions in promoter regions was also investigated. From Gene Ontology analysis results, DNA methylation was implicated in a number of essential functional responses to spinal cord injury, including neuronal synaptic connection creation and axon regeneration. Notably, neither CpG methylation nor non-CpG methylation was implicated in the functional response of glial or inflammatory cells. In summary, our work elucidated the dynamic pattern of DNA methylation in the spinal cord following injury and identified reduced non-CpG methylation as an epigenetic target after spinal cord injury in mice.

6.
Prog Neurobiol ; 227: 102467, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37257680

RESUMO

Spinal cord injury (SCI) leads to mental abnormalities such as dementia and depression; however, the molecular mechanism of SCI-induced dementia remains a matter of debate. Asparagine endopeptidase (AEP) mediated dementia by enhancing amyloid plaque and Tau hyperphosphorylation, indicating that it played an important role in neurodegeneration. Here we revealed that SCI stimulated AEP activation in mice with T9 contusion injury. Activated-AEP cleaved APP and Tau, resulting in APP C586 and Tau N368 formations, and consequentially accelerated Aß deposit and Tau hyperphosphorylation, respectively. At 9 months following injury, mice demonstrated a severe deterioration in cognitive-behavioral function, which was corroborated by the presence of accumulated AD-specific pathologies. Surprisingly, activated AEP was found in the brains of mice with spinal cord injury. In contrast, AEP knockout reduced SCI-induced neuronal death and neuroinflammation, resulting in cognitive-behavioral restoration. Interestingly, compared to the full-length proteins, truncated Tau N368 and APP C586 were easier to bind to each other. These AEP-processed fragments can not only be induced to pre-formed fibrils, but also amplified their abilities of spreading and neurotoxicity in vitro. Furthermore, as a critical transcription factor of AEP, C/EBPß was activated in injured spinal cord. Elevated C/EBPß level, as well as microglia population and inflammatory cytokines were also noticed in the cortex and hippocampus of SCI mice. These neuroinflammation pathologies were close related to the amount of Tau N368 and APP C586 in brain. Moreover, administration with the AEP-specific inhibitor, compound #11, was shown to decelerate Aß accumulation, tauopathy and C/EBPß level in both spinal cord and brain of SCI mice. Thus, this study highlights the fact that spinal cord injury is a potential risk factor for dementia, as well as the possibility that C/EBPß-AEP axis may play a role in SCI-induced cognitive impairment.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Disfunção Cognitiva , Cisteína Endopeptidases , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/fisiopatologia , Disfunção Cognitiva/etiologia , Animais , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas tau/metabolismo , Demência , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Knockout , Doenças Neuroinflamatórias , Cisteína Endopeptidases/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Feminino
8.
Neurotherapeutics ; 19(4): 1283-1297, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595958

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease with motor disorders as the key clinical features. BDNF/TrkB neurotrophic signalings are progressively reduced, whereas δ-secretase, a protease that cleaves α-synuclein (α-Syn) at N103 and promotes its aggregation and neurotoxicity, is gradually escalated in PD patient brains, associated with dopaminergic neuronal loss in the Substantia Nigra. Here, we show that stimulation of deficient BDNF/TrkB signalings with its small molecular agonist CF3CN displays the promising therapeutic effect, and blockade of δ-secretase with an optimal specific inhibitor #11A exhibits marked therapeutic effect, and combination of both demonstrates additive restorative efficacy in MPTP-induced human SNCA transgenic PD mice. Upon oral administration, CF3CN robustly activates TrkB-mediated neurotrophic pathway in the brains of SNCA mice and decreases α-Syn N103 cleavage by δ-secretase, and #11A strongly blocks δ-secretase and reduces α-Syn N103 fragmentation, increasing TH-positive dopaminergic neurons. The mixture of CF3CN and #11A shows the maximal TH and dopamine levels with demonstrable BDNF as compared to negligible BDNF in vehicle-treated MPTP/SNCA mice, leading to the climaxed motor functions. Notably, both compounds possess the appropriate in vivo PK profiles. Hence, our findings support that CF3CN and #11A are promising therapeutic pharmaceutical agents for treating PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Transdução de Sinais , Substância Negra/metabolismo
9.
Signal Transduct Target Ther ; 7(1): 65, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35232960

RESUMO

Spinal cord injury (SCI) involves diverse injury responses in different cell types in a temporally and spatially specific manner. Here, using single-cell transcriptomic analyses combined with classic anatomical, behavioral, electrophysiological analyses, we report, with single-cell resolution, temporal molecular and cellular changes in crush-injured adult mouse spinal cord. Data revealed pathological changes of 12 different major cell types, three of which infiltrated into the spinal cord at distinct times post-injury. We discovered novel microglia and astrocyte subtypes in the uninjured spinal cord, and their dynamic conversions into additional stage-specific subtypes/states. Most dynamic changes occur at 3-days post-injury and by day-14 the second wave of microglial activation emerged, accompanied with changes in various cell types including neurons, indicative of the second round of attacks. By day-38, major cell types are still substantially deviated from uninjured states, demonstrating prolonged alterations. This study provides a comprehensive mapping of cellular/molecular pathological changes along the temporal axis after SCI, which may facilitate the development of novel therapeutic strategies, including those targeting microglia.


Assuntos
Traumatismos da Medula Espinal , Animais , Astrócitos/metabolismo , Camundongos , Microglia/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo
10.
Prog Neurobiol ; 209: 102212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958873

RESUMO

ApoE4 is a major genetic risk determinant for Alzheimer's disease (AD) and drives its pathogenesis via Aß-dependent and -independent pathways. C/EBPß, a proinflammatory cytokine-activated transcription factor, is upregulated in AD patients and increases cytokines and δ-secretase expression. Under physiological conditions, ApoE is mainly expressed in glial cells, but its neuronal expression is highly elevated under pathological stresses. However, how neuronal ApoE4 mediates AD pathologies remains incompletely understood. Here we show that ApoE4 activates C/EBPß that subsequently regulates APP, Tau and BACE1 mRNA expression in mouse neurons, driving AD-like pathogenesis. To interrogate the pathological roles of both human ApoE4 and C/EBPß elevation in neurons in the aged brain, we develop neuronal specific Thy1-ApoE4/C/EBPß double transgenic mice. Neuronal ApoE4 strongly activates C/EBPß and augmented δ-secretase subsequently cleaves increased mouse APP and Tau, promoting AD-like pathologies. Notably, Thy1-ApoE4/C/EBPß mice develop amyloid deposits, Tau aggregates and neurodegeneration in an age-dependent manner, leading to synaptic dysfunction and cognitive disorders. Thus, our findings demonstrate that neuronal ApoE4 triggers AD pathogenesis via activating the crucial regulator C/EBPß.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Proteína beta Intensificadora de Ligação a CCAAT , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteína E4/genética , Ácido Aspártico Endopeptidases , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Humanos , Camundongos , Neurônios/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140411

RESUMO

The molecular mechanism of Alzheimer's disease (AD) pathogenesis remains obscure. Life and/or environmental events, such as traumatic brain injury (TBI), high-fat diet (HFD), and chronic cerebral hypoperfusion (CCH), are proposed exogenous risk factors for AD. BDNF/TrkB, an essential neurotrophic signaling for synaptic plasticity and neuronal survival, are reduced in the aged brain and in AD patients. Here, we show that environmental factors activate C/EBPß, an inflammatory transcription factor, which subsequently up-regulates δ-secretase that simultaneously cleaves both APP and Tau, triggering AD neuropathological changes. These adverse effects are additively exacerbated in BDNF+/- or TrkB+/- mice. Strikingly, TBI provokes both senile plaque deposit and neurofibrillary tangles (NFT) formation in TrkB+/- mice, associated with augmented neuroinflammation and extensive neuronal loss, leading to cognitive deficits. Depletion of C/EBPß inhibits TBI-induced AD-like pathologies in these mice. Remarkably, amyloid aggregates and NFT are tempospatially distributed in TrkB+/- mice brains after TBI, providing insight into their spreading in the progression of AD-like pathologies. Hence, our study revealed the roles of exogenous (TBI, HFD, and CCH) and endogenous (TrkB/BDNF) risk factors in the onset of AD-associated pathologies.


Assuntos
Doença de Alzheimer/metabolismo , Progressão da Doença , Meio Ambiente , Fatores de Crescimento Neural/metabolismo , Transdução de Sinais , Envelhecimento/metabolismo , Doença de Alzheimer/complicações , Amiloide/metabolismo , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/patologia , Cisteína Endopeptidases/metabolismo , Dieta Hiperlipídica , Humanos , Camundongos Endogâmicos C57BL , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Receptor trkB/metabolismo , Fatores de Risco
12.
Nat Commun ; 12(1): 2614, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972525

RESUMO

The differentiation of neural stem cells (NSCs) into neurons is proposed to be critical in devising potential cell-based therapeutic strategies for central nervous system (CNS) diseases, however, the determination and prediction of differentiation is complex and not yet clearly established, especially at the early stage. We hypothesize that deep learning could extract minutiae from large-scale datasets, and present a deep neural network model for predictable reliable identification of NSCs fate. Remarkably, using only bright field images without artificial labelling, our model is surprisingly effective at identifying the differentiated cell types, even as early as 1 day of culture. Moreover, our approach showcases superior precision and robustness in designed independent test scenarios involving various inducers, including neurotrophins, hormones, small molecule compounds and even nanoparticles, suggesting excellent generalizability and applicability. We anticipate that our accurate and robust deep learning-based platform for NSCs differentiation identification will accelerate the progress of NSCs applications.


Assuntos
Aprendizado Profundo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Simulação por Computador , Imunofluorescência , Hormônios/farmacologia , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Fatores de Crescimento Neural/farmacologia , Redes Neurais de Computação , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Ratos
13.
Ann Palliat Med ; 10(4): 4823-4829, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691459

RESUMO

As a traditional treatment invented in the 1970s, the usage of platelet-rich plasma (PRP) has been reported constantly in many medical areas, such as tissue regeneration, wound healing, ligament repair, hair loss, and so on. In this review, we focus on the administration of PRP in musculoskeletal recovery. As a part of autogenous blood plasma, PRP's platelet concentration is above the baseline. It is extracted from the host's blood sample collected before centrifugal separation. The history, mechanism and preparation of PRP, and existing clinical applications of it will become a helper for clinicians to better understand this therapy. However, the molecular mechanism of PRP treatment is still under debate. On the other hand, because of the safety concern during the PRP's preparation, the practical application of PRP is only applied in many rare cases, especially in spinal diseases. In this paper, we attempt to make a better understanding of the mechanism of PRP and the preparation of PRP; meanwhile, to raise existing questions about further application of PRP in the future. We recommend that PRP should be used in spinal diseases and other fields and in the future we ought to find a safe, simple, and standardized PRP preparation protocol.


Assuntos
Plasma Rico em Plaquetas , Humanos , Cicatrização
14.
ACS Nano ; 15(2): 2812-2830, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33527830

RESUMO

Immune microenvironment amelioration and reconstruction by functional biomaterials has become a promising strategy for spinal cord injury (SCI) recovery. In this study, we evaluated the neural regeneration and immunoregulation functions of Mg/Al layered double hydroxide (Mg/Al-LDH) nanoparticles in completely transected and excised mice and revealed the immune-related mechanisms. LDH achieved significant performance in accelerating neural stem cells (NSCs) migration, neural differentiation, L-Ca2+ channel activation, and inducible action potential generation. In vivo, the behavioral and electrophysiological performance of SCI mice was significantly improved by LDH implantation, with BrdU+ endogenous NSCs and neurons clearly observed in the lesion sites. According to RNA-seq and ingenuity pathway analysis, transforming growth factor-ß receptor 2 (TGFBR2) is the key gene through which LDH inhibits inflammatory responses and accelerates neural regeneration. Significant colocalization of TGFBR2 and LDH was found on the cell membranes of NSCs both in vitro and in vivo, and LDH increased the expression of TGF-ß2 in NSCs and activated the proliferation of precursor neural cells. LDH decreased the expression of M1 markers and increased the expression of M2 markers in both microglia and bone marrow-derived macrophages, and these effects were reversed by a TGFBR2 inhibitor. In addition, as a carrier, LDH loaded with NT3 exhibited better recovery effects with regard to the basso mouse scale score, motor evoked potential performance, and regenerated neural cell numbers than LDH itself. Thus, we have developed Mg/Al-LDH that can be used to construct a suitable immune microenvironment for SCI recovery and have revealed the targeted receptor.


Assuntos
Nanopartículas , Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Hidróxidos , Camundongos , Células-Tronco Neurais/transplante , Neurogênese , Fatores de Crescimento Transformadores
15.
Mol Psychiatry ; 26(2): 568-585, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32086435

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic neuronal loss and the presence of intra-neuronal Lewy body (LB) inclusions with aggregated α-synuclein (α-Syn) as the major component. MAOB, a crucial monoamine oxidase for dopamine metabolism, triggers oxidative stress in dopaminergic neurons and α-Syn aggregation. However, the key molecular mechanism that mediates PD pathogenesis remains elusive. Here we show that C/EBPß acts as an age-dependent transcription factor for both α-Syn and MAOB, and initiates the PD pathologies by upregulating these two pivotal players, in addition to escalating δ-secretase activity to cleave α-Syn and promotes its neurotoxicity. Overexpression of C/EBPß in human wild-type α-Syn transgenic mice facilitates PD pathologies and elicits motor disorders associated with augmentation of δ-secretase, α-Syn, and MAOB. In contrast, depletion of C/EBPß from human α-Syn Tg mice abolishes rotenone-elicited PD pathologies and motor impairments via downregulating the expression of these key factors. Hence, our study supports that C/EBPß/δ-secretase signaling mediates PD pathogenesis via regulating the expression and cleavage of α-Syn and MAOB.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Secretases da Proteína Precursora do Amiloide , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Neurônios Dopaminérgicos , Camundongos , Doença de Parkinson/genética , alfa-Sinucleína/genética
16.
Front Cell Neurosci ; 15: 768711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087378

RESUMO

Spinal cord injury (SCI) is caused by an external force, leading to severe dysfunction of the limbs below the injured segment. The inflammatory response plays a vital role in the prognosis of SCI. Human umbilical cord mesenchymal stem cell (hUCMSC) transplantation can promote repair of SCI by reducing the inflammatory response. We previously showed that hUCMSCs from 32 donors had different inhibitory abilities on BV2 cell proliferation. In this study, three experimental groups were established, and the mice were injected with different lines of hUCMSCs. Hind limb motor function, hematoxylin-eosin (H&E) staining, immunohistochemistry, Western blot (WB), qualitative real-time polymerase chain reaction (qRT-PCR), and RNA sequencing and correlation analysis were used to investigate the effects of hUCMSC transplantation on SCI mice and the underlying mechanisms. The results showed that the therapeutic effects of the three hUCMSC lines were positively correlated with their inhibitory abilities of BV2 cell proliferation rates in vitro. The MSC_A line had a better therapeutic effect on improving the hind limb motor function and greater effect on reducing the expression of glial fibrillary acidic protein (Gfap) and ionized calcium binding adaptor molecule 1 (Iba1) and increasing the expression of neuronal nuclei (NeuN). Differentially expressed genes including Zbtb16, Per3, and Hif3a were probably the key genes involved in the protective mechanism by MSC_A after nerve injury. qRT-PCR results further verified that Zbtb16, Per3, and Hif3a expressions reduced by SCI could be reversed by MSC_A application. These results suggest that the effect of hUCMSCs transplantation on acute SCI depends on their inhibitory abilities to inflammation reaction after nerve injury, which may help to shape future use of hUCMSCs combined with improving the effectiveness of clinical transformation.

17.
Cell Death Dis ; 11(12): 1058, 2020 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-33311478

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease with multifactorial pathologies including Aß containing senile plaques and neurofibrillary tangles (NFT) consisted of aggregated Tau. Most of the AD patients are sporadic and the familial mutation hereditary patients are composed only 1% of all cases. However, the current AD mouse models employ mutated APP, PS1, or even Tau mutant, in order to display a portion of AD pathologies. Delta-secretase (legumain, or asparaginyl endopeptidase, AEP) simultaneously cleaves both APP and Tau and augments Aß production and Tau hyperphosphorylation and aggregation, contributing to AD pathogenesis. Here we show that δ-secretase is sufficient to promote prominent AD pathologies in wild-type hAPP/hMAPT double transgenic mice. We crossed hAPP l5 mice and hMAPT mice to generate double transgenic mouse model carrying both human wild-type APP and Tau. Compared to the single transgenic parents, these double transgenic mice demonstrated AD-related pathologies in one-year-old hAPP/hMAPT mice. Notably, overexpression of δ-secretase in hAPP/hMAPT double-transgenic mice evidently accelerated enormous senile plaques and NFT, associated with prominent synaptic defects and cognitive deficits. Hence, δ-secretase facilitates AD pathogenesis independent of any patient-derived mutation.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Animais , Disfunção Cognitiva/complicações , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinapses/metabolismo , Sinapses/ultraestrutura
18.
Eur Neurol ; 83(2): 195-212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32474563

RESUMO

INTRODUCTION: Spinal cord injury (SCI) causes most severe motor and sensory dysfunctions. In Chinese traditional medicine, the agonist of a purinergic receptor is believed to have a positive effect on SCIs, and 2-Methylthio-adenosine-5'-diphosphate (2-MesADP) is a selective agonist of the P2Y purinergic receptor. METHODS: To investigate its therapeutic function and molecular mechanism in SCI, transcriptome analysis associated with weighted gene co-expression network analysis (WGCNA) was carried out at various time points after T9 crush injury. RESULTS: 2-MesADP demonstrated recovery of limb motor function at the 6 weeks after injury, accompanied by neuronal regeneration and axon remyelination at 2 and 6 weeks. Furthermore, gene profiling revealed alternated gene expression with the treatment of 2-MesADP. These genes were assigned to a total of 38 modules, followed by gene ontology analysis; of these, 18 represented neuronal apoptosis and regeneration, immune response, synaptic transmission, cell cycle, and angiogenesis. In the neuronal apoptosis and regeneration module, Nefh, NeuroD6, and Dcx in the 2-MesADP group were noticed due to their interesting expression pattern. The gene expression patterns of Mag, Mog, and Cnp, which played key roles in myelination, were significantly changed with the treatment of 2-MesADP. Wnt signal pathway was the most important pathway in 2-MesADP treatment for acute SCI. CONCLUSION: 2-MesADP enhanced locomotor recovery in mouse SCI by altering the expression of neuronal apoptosis and remyelination-related genes and Wnt signaling pathways.


Assuntos
Difosfato de Adenosina/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , Locomoção/fisiologia , Agonistas Purinérgicos/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal , Tionucleotídeos/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Proteína Duplacortina , Humanos , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Remielinização/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
19.
Ann Transl Med ; 8(5): 210, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32309357

RESUMO

BACKGROUND: More and more studies have focused on the treatment of spinal cord injury (SCI) by tissue engineering, but there is still no ideal animal model that can genuinely and objectively simulate the real pathological process in clinical practice. Also, given the increasing availability and use of genetically modified animals in basic science research, it has become essential to develop clinically related models for SCI for use in mice. METHODS: Forty-eight C57BL/6 mice were divided into three groups (injured/sham/uninjured). We determined the scar range made by the first crush injury by specimen observation, hematoxylin and eosin (HE) staining, and immunofluorescence staining. Transection to completely remove a 2-mm spinal cord segment centered on the lesion core was completed 6 weeks after the first injury in injured groups, whereas the sham group only underwent re-exposure of the spinal cord without transection injury. The characteristics of this SCI model were fully ascertained by specimen observation, HE staining, immunofluorescence staining, and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: No mice died after the first injury. Histopathological findings suggested a scar range of 2 mm. After the second operation, 2 mice of the injured group and 1 mouse of the sham group died. The Basso Mouse Scale (BMS) score and motor evoked potential (MEP) results showed that the neurological function of mice did not recover. Immunostaining showed that there were no neurons or neurofilament residues in the lesion core 4 weeks after the second injury. Astrocytes encapsulated immune cells to form dense glial scars. Most immune cells were confined to the core of the lesion and formed fibrous scars with the fibroblasts. At the same time, there was considerable angiogenesis in the lesion core and around the injury. The results of qRT-PCR showed that Ptprc was highly expressed in the lesion core, while Gfap, nestin, Cnp, and Sv2b were highly expressed in the adjacent region. This suggests that the lesion core is a highly inflammatory zone, but there may be spontaneous neurogenesis adjacent to the lesion core. CONCLUSIONS: The mouse crash-complete transection SCI model made by the two operations has good simulation, high feasibility, and high reproducibility; it will be a useful tool for pre-clinical testing of SCI treatment.

20.
Spine J ; 20(7): 1138-1151, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145360

RESUMO

BACKGROUND CONTEXT: Acute spinal cord injury (SCI) is a devastating condition for which spine decompression and stabilization of injury remains the only therapy available in the clinical setup. However, fibrous scar formation during the healing process significantly impairs full recovery. MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target mRNA(s) and initiating translational repression or mRNA degradation. It has been reported that microRNA-133b (miR133b) is highly expressed in regenerating neurons following a SCI in zebrafish, and lentiviral delivery of miR133b at the time of SCI in mice resulted in improved functional recovery. PURPOSE: The aim of this study was to investigate whether intravenous delivery of miR133b enhances spinal cord recovery when administered 24 hours following a cervical contusion injury in mice. STUDY DESIGN: This is an experimental animal study of acute SCI, investigating the effect of miR133b on spinal cord recovery by targeting scar lesion formation. The approach involved setting an acute SCI in mice, which was followed 24 hours later by intravenous co-delivery of miR133b and Argonaute 2 (Ago2), a protein involved in miRNA stabilization. Readouts of the impact of this intervention included analysis of RNA and protein expression at the lesion site, in particular with regard to markers of scar tissue formation, and determination of motor function recovery by the grip strength meter task. METHODS: C57BL6 female mice between 6 and 8 weeks of age were tested. The injury model employed was a unilateral moderate contusion at the cervical fifth level. Twenty-four hours following the injury, the authors co-delivered miR133b, or scrambled miRNA as negative control, along with Ago2 for 3 consecutive days, one dose per day via tail-vein injection. They first investigated the level of miR133b in the spinal cord and in spinal cord lesion after a single dose of injection. Next, they determined the efficacy of miR133b and/or Ago2 delivery in regulating gene and protein expression at the lesion site. Finally, they established the role of miR133b and/or Ago2 in enhancing forelimb gripping recovery as assessed by the grip strength meter task for 8 weeks post-SCI. RESULTS: Intravenous delivery of miR133b and/or Ago2 targeted the microenvironment at the lesion site and prevented the increased expression of certain extracellular matrix proteins (ECM), in particular collagen type 1 alpha 1 and tenascin N, which are known to have a key role in scar formation. It also reduced microglia and/or macrophage recruitment to the lesion site. Functional recovery in mice treated with miR133b and/or Ago2 started around 2 weeks postinjury and continued to improve over time, whereas mice in the control group displayed significantly poorer recovery. CONCLUSIONS: Our data indicate therapeutic activity of intravenous miR133b and/or Ago2 treatment, possibly via decreasing ECM protein expression and macrophage recruitment at the lesion site, thereby minimizing detrimental fibrous scar formation. CLINICAL SIGNIFICANCE: There is an urgent medical need for better treatments of SCIs. Based on our findings in a preclinical model, the miR133b and/or Ago2 system specifically targets fibrous scar formation, a barrier in neuronal regrowth, by remodeling ECM molecules at the injury site. Prevention of scar formation is critical to improved outcomes of treatment. Of note, delivery of miR133b and/or Ago2 was initiated 24 hours after traumatic impact, thus indicating a fairly long window of opportunity providing more time and flexibility for therapeutic intervention. Intravenous miR133b may become a beneficial therapeutic strategy to treat patients with acute SCI.


Assuntos
Contusões , Traumatismos da Medula Espinal , Animais , Feminino , Camundongos , MicroRNAs/genética , Recuperação de Função Fisiológica , Medula Espinal , Traumatismos da Medula Espinal/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...