Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(15): 3885-3888, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527074

RESUMO

We report a voltage-tunable reflective gold wire grid metasurface on vanadium dioxide thin film, which consists of a metal-insulator-metal (MIM) structure. We excite surface plasmon polariton (SPP) modes on the gold surface by fabricating a one-dimensional structured gold wire grid. Joule heating of laser-induced graphene (LIG) can be controlled by the voltage at the bottom, allowing vanadium dioxide in the structure to complete the transition from the insulating state to the metallic state. The phase transition of vanadium dioxide strongly disrupts the plasmon modes excited by the gold wire grid above, thereby realizing a huge change in the reflection spectrum. This acts as a tunable metasurface optical switch with a maximum modulation depth (MD) of over 20 dB. We provide a more effective and simple method for creating tunable metasurfaces in the near-infrared band, which can allow metasurfaces to have wider applications in optical signal processing, optical storage, and holography.

2.
Opt Lett ; 47(22): 5905-5908, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219133

RESUMO

Electrically tunable metasurfaces can realize two-dimensional pixelated spatial light modulation and have a wide range of applications in optical switching, free-space communication, high-speed imaging, and so on, arousing the interest of researchers. Here, a gold nanodisk metasurface on a lithium-niobate-on-insulator (LNOI) substrate is fabricated and experimentally demonstrated as an electrically tunable optical metasurface for transmissive free-space light modulation. Using the hybrid resonance formed by the localized surface plasmon resonance (LSPR) of gold nanodisks and the Fabry-Perot (FP) resonance, the incident light is trapped in the gold nanodisk edges and a thin lithium niobate layer to realize field enhancement. In this way, an extinction ratio of 40% is achieved at the resonance wavelength. In addition, the proportion of hybrid resonance components can be adjusted by the size of the gold nanodisks. By applying a driving voltage of ± 2.8 V, a dynamic modulation of 135 MHz is achieved at resonant wavelength. The highest signal-to-noise ratio (SNR) is up to 48 dB at 75 MHz. This work paves the way for the realization of spatial light modulators based on CMOS-compatible LiNbO3 planar optics, which can be used in lidar, tunable displays, and so on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...