Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Circ Res ; 134(5): 592-613, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422175

RESUMO

The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.


Assuntos
Síndrome Cardiorrenal , Doenças Vasculares , Humanos , Coração , Rim/metabolismo , Transdução de Sinais , Pulmão/metabolismo
2.
Radiat Res ; 200(5): 462-473, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796808

RESUMO

The effect of autophagy on the radiation-induced bystander effect (RIBE) in vivo is unclear. Here, the whole brains of microtubule-associated protein 1A/1B-light chain 3 (LC3) and C57BL/6 (B6) mice were irradiated once (10 Gy)(IR1), given 3 fractions in three weeks (IR3), or 6 fractions in six weeks (IR6). The median survival of LC3 mice was 56.5 days, and that of B6 mice was 65 days after IR6. LC3 mice showed more congestion and fibrosis in the lung after the IR3 and IR6 irradiation protocols than B6 mice. Quantitative proteomics of serum samples and lung RNA sequencing of the LC3 group showed that the common most clustered pathway of the IR3 group was the elastic fiber formation pathway, which contained Periostin (POSTN). POSTN in the motoneurons increased with increasing number of radiation fractions in LC3 mice. A 1 µg/g POSTN neutralizing antibody reduced the lung fibrosis of LC3 mice exposed to IR3 by one-third, and significantly prolonged the survival time of LC3 mice exposed to IR6. LDN-214117 and LRRK2-in-1 were the best two of sixteen transforming growth factor-beta1 (TGF-ß) receptor and autophagy mediators to decrease Postn mRNA. These data led us to conclude that LC3 accelerated motoneuron secretion of POSTN and aggravated the RIBE in the lung after brain irradiation.


Assuntos
Fibrose Pulmonar , Lesões por Radiação , Camundongos , Animais , Camundongos Endogâmicos C57BL , Pulmão/efeitos da radiação , Fibrose Pulmonar/metabolismo , Lesões por Radiação/metabolismo , Encéfalo , Neurônios Motores
3.
Aging (Albany NY) ; 15(14): 6905-6920, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37466428

RESUMO

This study aimed to develop an exosome-coated polydatin (PD) nanoparticles (exo-PD) for improving the water solubility and bioavailability of polydatin and explore its salutary effects on intestinal radiation injury. Exosomes (exo) were extracted from the medium of human amniotic fluid stem cells (hAFSc). Mice were divided into control group, irradiation (IR) group, irradiation+PD (IR+PD) group, irradiation+exo (IR+exo) group and irradiation+exo-PD (IR+exo-PD) group. The results of characterization of protein markers, particle size, morphology and cellular uptake ability confirmed that exosomes were effectively isolated using ultracentrifugation. Compared with the IR group, exo-PD improved cell viability, prolonged survival of mice, improved leukocyte count and reduced diarrhea rate. Histological results showed that the exo-PD group had significant improvements in small intestinal villus length and crypt number and less crypt cell damage. exo-PD could reduce IL-1α and IL-6 levels, reduced γ-H2AX expression, increased mitochondrial membrane potential, enhanced oxidative phosphorylation, and delayed cellular senescence. exo-PD could alleviate intestinal injury by improving mitochondrial function through PI3K-AKT pathway. The exo-PD was able to reduce radiation damage to intestinal cells and could be a potential candidate for salvage of intestinal radiation damage.


Assuntos
Exossomos , Estilbenos , Humanos , Camundongos , Animais , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Estilbenos/farmacologia , Estilbenos/uso terapêutico
4.
Circ Res ; 132(8): 1084-1100, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053282

RESUMO

The identification of mediators for physiologic processes, correlation of molecular processes, or even pathophysiological processes within a single organ such as the kidney or heart has been extensively studied to answer specific research questions using organ-centered approaches in the past 50 years. However, it has become evident that these approaches do not adequately complement each other and display a distorted single-disease progression, lacking holistic multilevel/multidimensional correlations. Holistic approaches have become increasingly significant in understanding and uncovering high dimensional interactions and molecular overlaps between different organ systems in the pathophysiology of multimorbid and systemic diseases like cardiorenal syndrome because of pathological heart-kidney crosstalk. Holistic approaches to unraveling multimorbid diseases are based on the integration, merging, and correlation of extensive, heterogeneous, and multidimensional data from different data sources, both -omics and nonomics databases. These approaches aimed at generating viable and translatable disease models using mathematical, statistical, and computational tools, thereby creating first computational ecosystems. As part of these computational ecosystems, systems medicine solutions focus on the analysis of -omics data in single-organ diseases. However, the data-scientific requirements to address the complexity of multimodality and multimorbidity reach far beyond what is currently available and require multiphased and cross-sectional approaches. These approaches break down complexity into small and comprehensible challenges. Such holistic computational ecosystems encompass data, methods, processes, and interdisciplinary knowledge to manage the complexity of multiorgan crosstalk. Therefore, this review summarizes the current knowledge of kidney-heart crosstalk, along with methods and opportunities that arise from the novel application of computational ecosystems providing a holistic analysis on the example of kidney-heart crosstalk.


Assuntos
Síndrome Cardiorrenal , Ecossistema , Humanos , Estudos Transversais , Rim , Coração
5.
Artigo em Inglês | MEDLINE | ID: mdl-36276846

RESUMO

Cancer is a complex disease with several distinct characteristics, referred to as "cancer markers" one of which is metabolic reprogramming, which is a common feature that drives cancer progression. Over the last ten years, researchers have focused on the reprogramming of glucose metabolism in cancer. In cancer, the oxidative phosphorylation metabolic pathway is converted into the glycolytic pathway in order to meet the growth requirements of cancer cells, thereby creating a microenvironment that promotes cancer progression. The precise mechanism of glucose metabolism in cancer cells is still unknown, but it is thought to involve the aberrant levels of metabolic enzymes, the influence of the tumor microenvironment (TME), and the activation of tumor-promoting signaling pathways. It is suggested that glucose metabolism is strongly linked to cancer progression because it provides energy to cancer cells and interferes with antitumor drug pharmacodynamics. Therefore, it is critical to unravel the mechanism of glucose metabolism in tumors in order to gain a better understanding of tumorigenesis and to lay the groundwork for future research into the identification of novel diagnostic markers and therapeutic targets for cancer treatment. Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, multiple components, and less toxic side effects and has unique advantages in tumor treatment. In recent years, researchers have found that a variety of Chinese medicine monomers and compound recipes play an antitumor role by interfering with the reprogramming of tumor metabolism. The underlying mechanisms of metabolism reprogramming of tumor cells and the role of TCM in regulating glucose metabolism are reviewed in this study, so as to provide a new idea for antitumor research in Chinese medicine.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35360660

RESUMO

Background: Houttuynia cordata Thunb. is a traditional Chinese herb widely used mainly because of the pharmacological effects related to heat clearance and detoxification. Emerging clinical evidence indicates that the efficacy of Houttuynia cordata Thunb. on RILI is upstanding. Nevertheless, its underlying therapeutic mechanism remains unclear and warrants further elucidation. Methods: The major active components and corresponding targets of Houttuynia cordata Thunb. were retrieved from the traditional Chinese medicine system pharmacology database (TCMSP) and literature review. The related targets of RILI were retrieved from the GeneCards database. Common targets among the active compounds and diseases were identified through Venn diagram analysis. Cytoscape was employed to construct and visualize the network relationship among the drug, active compounds, targets, and disease. The protein interaction network (PPI) was constructed by STRING. The reliability (the binding affinity) of the core targets and active compounds was verified by molecular docking. Results: A search of the TCMSP database and related literature revealed 12 active compounds of Houttuynia cordata Thunb. against RILI. The core active compounds included quercetin, kaempferol, hyperoside, and rutin. Hub nodes including TP53, VEGFA, JUN, TNF, and IL-6 were identified in the PPI network. The GO categories were classified into three functional categories: 112 biological processes, 9 molecular functions, and 32 cellular components of the active compounds of Houttuynia cordata Thunb. The KEGG pathway enrichment analysis demonstrated the enrichment of target genes in several key cancer-related signaling pathways, including the cancer pathways, TNF signaling pathway, PI3K-Akt signaling pathway, and HIF-1 signaling pathway. Molecular docking analysis validated the effective binding capacity of the main active compounds with the core targets. Conclusion: The main active components of Houttuynia cordata Thunb. have a potential pharmacological effect against RILI via the cancer pathways, TNF signaling pathway, and PI3K-Akt signaling pathway.

8.
Mol Aspects Med ; 86: 101010, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34404548

RESUMO

Despite the introduction of lipid-lowering drugs, antihypertensives, antiplatelet and anticoagulation therapies for primary prevention of cardiovascular and heart diseases (CVD), it remains the number one cause of death globally, raising the question for novel/further essential factors besides traditional risk factors such as cholesterol, blood pressure and coagulation. With continuous identification and characterization of non-enzymatic post-translationally modified isoforms of proteins and lipoproteins, it is becoming increasingly clear that irreversible non-enzymatic post-translational modifications (nPTMs) alter the biological functions of native proteins and lipoproteins thereby transforming innate serum components into CVD mediators. In particular renal insufficiency and metabolic imbalance are major contributors to the systemically increased concentration of reactive metabolites and thus increased frequency of nPTMs, promoting multi-morbid disease development centering around cardiovascular disease. nPTMs are significantly involved in the onset and progression of cardiovascular disease and represent a significant and novel risk factor. These insights represent potentially new avenues for risk assessment, prevention and therapy. This review chapter summarizes all forms of nPTMs found in CKD and under metabolic imbalance and discusses the biochemical connections between molecular alterations and the pathological impact on increased cardiovascular risk, novel nPTM-associated non-traditional cardiovascular risk factors, and clinical implication of nPTM in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/metabolismo , Fatores de Risco de Doenças Cardíacas , Humanos , Lipoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Risco
9.
BMJ Open ; 11(12): e048975, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857558

RESUMO

OBJECTIVE: To assess the efficacy and safety of bevacizumab (BEV) in patients with glioma. DESIGN: Systematic review and meta-analysis. PARTICIPANTS: Adults aged 18 years and above, whose histology was confirmed to be malignant glioma. PRIMARY AND SECONDARY OUTCOME MEASURES: The main indicators included progression-free survival (PFS) rate and overall survival (OS) rate, and the secondary indicators were adverse reactions. RESULTS: A total of 11 clinical centre trials were included in this study for meta-analysis, including 2392 patients. The results of the meta-analysis showed that the median PFS rate of the BEV group was significantly higher than that of the non-BEV group (p<0.00001). When comparing PFS between two groups, we found that the PFS in the BEV group was higher than that in the non-BEV group at 6 months (OR 3.31, 95% CI 2.74 to 4.00, p<0.00001), 12 months (OR 2.05, 95% CI 1.70 to 2.49, p<0.00001) and 18 months (OR 1.31, 95% CI 1.02 to 1.69, p=0.03). But at 24 months (OR 0.83, 95% CI 0.50 to 1.37, p=0.47), there was no significant difference between the two groups. At 30 months (OR 0.62, 95% CI 0.39 to 0.97, p=0.04), the PFS of the BEV group was lower than that of the non-BEV group. Moreover, The results showed that BEV had no significant effect on improving OS, but the adverse reaction in BEV group was significantly higher than that in non-BEV group. CONCLUSION: The evidence suggests that BEV can significantly prolong the PFS of patients with glioma within 18 months and shorten the PFS of patients after 30 months. This limitation may be related to the subgroup of patients, the change of recurrence mode, the optimal dose of drug, the increase of hypoxia, the enhancement of invasiveness and so on. Therefore, it is necessary to carry out more samples and higher quality large-scale research in the future.


Assuntos
Glioma , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/efeitos adversos , Glioma/tratamento farmacológico , Humanos , Intervalo Livre de Progressão
10.
Basic Res Cardiol ; 116(1): 57, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34647168

RESUMO

The adrenal glands participate in cardiovascular (CV) physiology and the pathophysiology of CV diseases through their effects on sodium and water metabolism, vascular tone and cardiac function. In the present study, we identified a new adrenal compound controlling mesenchymal cell differentiation that regulates osteoblastic differentiation in the context of vascular calcification. This peptide was named the "calcification blocking factor" (CBF) due to its protective effect against vascular calcification and is released from chromogranin A via enzymatic cleavage by calpain 1 and kallikrein. CBF reduced the calcium content of cells and thoracic aortic rings under calcifying culture conditions, as well as in aortas from animals treated with vitamin D and nicotine (VDN animals). Furthermore, CBF prevented vascular smooth muscle cell (VSMC) transdifferentiation into osteoblast-like cells within the vascular wall via the sodium-dependent phosphate transporter PIT-1 and by inhibition of NF-κB activation and the subsequent BMP2/p-SMAD pathway. Pulse pressure, a marker of arterial stiffness, was significantly decreased in VDN animals treated with CBF. In line with our preclinical data, CBF concentration is significantly reduced in diseases characterized by increased calcification, as shown in patients with chronic kidney disease. In preparation for clinical translation, the active site of the native 19-AS long native CBF was identified as EGQEEEED. In conclusion, we have identified the new peptide CBF, which is secreted from the adrenal glands and might prevent vascular calcification by inhibition of osteogenic transdifferentiation. The anti-calcific effects of CBF and short active site may therefore promote the development of new tools for the prevention and/or treatment of vascular calcification.


Assuntos
Transdiferenciação Celular , Calcificação Vascular , Animais , Células Cultivadas , Cromogranina A , Humanos , Músculo Liso Vascular , Miócitos de Músculo Liso , Calcificação Vascular/prevenção & controle
11.
Front Oncol ; 11: 719253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604055

RESUMO

BACKGROUND: Metastatic pancreatic cancer (mPC) is a highly lethal malignancy with poorer survival. However, chemotherapy alone was unable to maintain long-term survival. This study aimed to evaluate the individualized survival benefits of pancreatectomy plus chemotherapy (PCT) for mPC. METHODS: A total of 4546 patients with mPC from 2004 to 2015 were retrieved from the Surveillance, Epidemiology, and End Results database. The survival curve was calculated using the Kaplan-Meier method and differences in survival curves were tested using log-rank tests. Cox proportional hazards regression analyses were performed to evaluate the prognostic value of involved variables. A new nomogram was constructed to predict overall survival based on independent prognosis factors. The performance of the nomogram was measured by concordance index, calibration plot, and area under the receiver operating characteristic curve. RESULTS: Compared to pancreatectomy or chemotherapy alone, PCT can significantly improve the prognosis of patients with mPC. In addition, patients with well/moderately differentiated tumors, age ≤66 years, tumor size ≤42 mm, or female patients were more likely to benefit from PCT. Multivariate analysis showed that age at diagnosis, sex, marital status, grade, tumor size, and treatment were independent prognostic factors. The established nomogram has a good ability to distinguish and calibrating. CONCLUSION: PCT can prolong survival in some patients with mPC. Our nomogram can individualize predict OS of pancreatectomy combined with chemotherapy in patients with concurrent mPC.

12.
Foods ; 10(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920660

RESUMO

Hemerocallis citrina Baroni (HC) is an edible plant in Asia, and it has been traditionally used for sleep-improvement. However, the bioactive components and mechanism of HC in sleep-improvement are still unclear. In this study, the sleep-improvement effect of HC hydroalcoholic extract was investigated based on a caffeine-induced insomnia model in Drosophila melanogaster (D. melanogaster), and the ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-ESI-Orbitrap-MS) and network pharmacology strategy were further combined to screen systematically the active constituents and mechanism of HC in sleep-improvement. The results suggested HC effectively regulated the number of nighttime activities and total sleep time of D. melanogaster in a dose-dependent manner and positively regulated the sleep bouts and sleep duration of D. melanogaster. The target screening suggested that quercetin, luteolin, kaempferol, caffeic acid, and nicotinic acid were the main bioactive components of HC in sleep-improvements. Moreover, the core targets (Akt1, Cat, Ple, and Sod) affected by HC were verified by the expression of the mRNA of D. melanogaster. In summary, this study showed that HC could effectively regulate the sleep of D. melanogaster and further clarifies the multi-component and multi-target features of HC in sleep-improvement, which provides a new insight for the research and utilization of HC.

13.
Macromol Biosci ; 21(5): e2000399, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33656279

RESUMO

Designing skin decontaminating materials with outstanding therapeutic effects, adhesiveness, and suitable mechanical property has great practical significance in radionuclide-contaminated skin wound healing. Here, a physically crosslinked hydrogel is constructed via hydrogen bonding of poly acrylamide, sodium alginate (SA), and the complexing agent diethylene triamine pentaacetic acid (DTPA). The physical and chemical properties of the poly(AAm-SA-DTPA) hydrogel (PASD) are detected according to established methods. The decontaminating property and skin wound healing of the PASD are investigated to confirm multi-functions of wound dressing. The physical and chemical properties results show that the synthesis of the PASD hydrogel is effective and that DTPA is present in the hydrogel. The hydrogel also shows great mechanical and swelling properties. In vitro tests find that PASD shows significant scavenging abilities for strontium and cerium. In vivo experiments show that the PASD hydrogel can remove radioactive strontium from the skin wounds of mice, and can effectively prevent the absorption of radioactive strontium through the skin wound. Furthermore, the PASD hydrogel can effectively promote the formation of granulation tissue in a radioactive contaminated wound. Taken together, the PASD hydrogels, which has good mechanical properties and radionuclides decontamination, is expected to be used as a dressing for radionuclide-contaminated skin wound healing.


Assuntos
Descontaminação/métodos , Hidrogéis , Radioisótopos/isolamento & purificação , Pele/lesões , Ferimentos e Lesões , Resinas Acrílicas/química , Alginatos/química , Animais , Animais não Endogâmicos , Ligação de Hidrogênio , Camundongos , Estresse Oxidativo , Ácido Pentético/análise , Pele/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização , Ferimentos e Lesões/metabolismo
15.
Dose Response ; 18(3): 1559325820938541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684872

RESUMO

We aimed to determine the toxic effects of tritiated water (HTO) on 12 generations (T1-T12) of human umbilical vein vascular endothelial cells (HUVECs) and elucidate the underlying mechanisms. We evaluated cellular senescence, interleukin (IL) 8 concentrations, and angiogenesis using ß-galactosidase staining, enzyme-linked immunosorbent assay, and in vitro assays, respectively. The adhesion properties of contaminated cells and differentially expressed genes were assessed using the xCELLigence RTCA SP system and gene chip analysis, respectively. We found that long-term exposure to low levels of HTO can reduce the adhesion of HUVECs to the cellular matrix as well as their angiogenic capacity, while increasing their permeability, senescence, and adhesion to monocytes. Interleukin 8 activated the p38 and Epidermal Growth Factor Receptor (EGFR) pathways in HTO-treated cells and hence was identified as a key candidate of biomarker. The present study clarified the toxicity of HTO in vascular endothelial cells and identified IL8 as a novel protective target with important theoretical and practical values.

16.
Aging (Albany NY) ; 12(14): 14341-14354, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32668413

RESUMO

Inactivating mutations in the liver kinase B1 (LKB1) tumor suppressor gene underlie Peutz-Jeghers syndrome (PJS) and occur frequently in various human cancers. We previously showed that LKB1 regulates centrosome duplication via PLK1. Here, we report that LKB1 further helps to maintain genomic stability through negative regulation of survivin, a member of the chromosomal passenger complex (CPC) that mediates CPC targeting to the centromere. We found that loss of LKB1 led to accumulation of misaligned and lagging chromosomes at metaphase and anaphase and increased the appearance of multi- and micro-nucleated cells. Ectopic LKB1 expression reduced these features and improved mitotic fidelity in LKB1-deficient cells. Through pharmacological and genetic manipulations, we showed that LKB1-mediated repression of survivin is independent of AMPK, but requires p53. Consistent with the key influence of LKB1 on survivin expression, immunohistochemical analysis indicated that survivin is highly expressed in intestinal polyps from a PJS patient. Lastly, we reaffirm a potential therapeutic avenue to treat LKB1-mutated tumors by demonstrating the increased sensitivity to survivin inhibitors of LKB1-deficient cells.


Assuntos
Centrômero/efeitos dos fármacos , Genes p53/efeitos dos fármacos , Genoma/efeitos dos fármacos , Síndrome de Peutz-Jeghers/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Survivina/biossíntese , Survivina/genética , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular Tumoral , Aberrações Cromossômicas , Humanos , Pólipos Intestinais/genética , Mitose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , Ensaio Tumoral de Célula-Tronco , Regulação para Cima/genética
17.
Adv Drug Deliv Rev ; 159: 294-307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32553782

RESUMO

Lipids are ubiquitous in the human organism and play essential roles as components of cell membranes and hormones, for energy storage or as mediators of cell signaling pathways. As crucial mediators of the human metabolism, lipids are also involved in metabolic diseases, cardiovascular and renal diseases, cancer and/or hepatological and neurological disorders. With rapidly growing evidence supporting the impact of lipids on both the genesis and progression of these diseases as well as patient wellbeing, the characterization of the human lipidome has gained high interest and importance in life sciences and clinical diagnostics within the last 15 years. This is mostly due to technically advanced molecular identification and quantification methods, mainly based on mass spectrometry. Mass spectrometry has become one of the most powerful tools for the identification of lipids. New lipidic mediators or biomarkers of diseases can be analysed by state-of-the art mass spectrometry techniques supported by sophisticated bioinformatics and biostatistics. The lipidomic approach has developed dramatically in the realm of life sciences and clinical diagnostics due to the available mass spectrometric methods and in particular due to the adaptation of biostatistical methods in recent years. Therefore, the current knowledge of lipid extraction methods, mass-spectrometric approaches, biostatistical data analysis, including workflows for the interpretation of lipidomic high-throughput data, are reviewed in this manuscript.


Assuntos
Lipidômica , Humanos , Lipídeos/classificação , Espectrometria de Massas
18.
Cardiovasc Pathol ; 40: 47-54, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30852297

RESUMO

OBJECTIVE: We aimed to elucidate the local role of FGF23 after myocardial infarction in a mouse model induced by left anterior descending artery (LAD) ligation. APPROACH AND RESULTS: (C57BL/6 N) mice underwent MI via LAD ligation and were sacrificed at different time-points post MI. The expression and influence of FGF23 on fibroblast and macrophages was also analyzed using isolated murine cells. We identified enhanced cardiac FGF23 mRNA expression in a time-dependent manner with an early increase, already on the first day after MI. FGF23 protein expression was abundantly detected in the infarcted area during the inflammatory phase. While described to be primarily produced in bone or macrophages, we identified cardiac fibroblasts as the only source of local FGF23 production after MI. Inflammatory mediators, such as IL-1ß, IL-6 and TNF-α, were able to induce FGF23 expression in these cardiac fibroblasts. Interestingly, we were not able to detect FGF23 at later time points after MI in mature scar tissue or remote myocardium, most likely due to TGF-ß1, which we have shown to inhibit the expression of FGF23. We identified FGFR1c to be the most abundant receptor for FGF23 in infarcted myocardium and cardiac macrophages and fibroblasts. FGF23 increased migration of cardiac fibroblast, as well as expression of Collagen 1, Periostin, Fibronectin and MMP8. FGF23 also increased expression of TGF-ß1 in M2 polarized macrophages. CONCLUSION: In conclusion, cardiac fibroblasts in the infarcted myocardium produce and express FGF23 as well as its respective receptors in a time-dependent manner, thus potentially influencing resident cell migration. The transitory local expression of FGF23 after MI points towards a complex role of FGF23 in myocardial ischemia and warrants further exploration, considering its role in ventricular remodeling.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Animais , Movimento Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibronectinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Metaloproteinase 8 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
19.
Front Pharmacol ; 10: 79, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787877

RESUMO

The retention and cellular internalization of drug delivery systems and theranostics for cancer therapy can be improved by targeting molecules. Since an increased uptake of riboflavin was reported for various cancers, riboflavin and its derivatives may be promising binding moieties to trigger internalization via the riboflavin transporters (RFVT) 1, 2, and 3. Riboflavin is a vitamin with pivotal role in energy metabolism and indispensable for cellular growth. In previous preclinical studies on mice, we showed the target-specific accumulation of riboflavin-functionalized nanocarriers in cancer cells. Although the uptake mechanism of riboflavin has been studied for over a decade, little is known about the riboflavin transporters and their expression on cancer cells, tumor stroma, and healthy tissues. Furthermore, evidence is lacking concerning the representativeness of the preclinical findings to the situation in humans. In this study, we investigated the expression pattern of riboflavin transporters in human squamous cell carcinoma (SCC), melanoma and luminal A breast cancer samples, as well as in healthy skin, breast, aorta, and kidney tissues. Low constitutive expression levels of RFVT1-3 were found on all healthy tissues, while RFVT2 and 3 were significantly overexpressed in melanoma, RFVT1 and 3 in luminal A breast cancer and RFVT1-3 in SCC. Correspondingly, the SCC cell line A431 was highly positive for all RFVTs, thus qualifying as suitable in vitro model. In contrast, activated endothelial cells (HUVEC) only presented with a strong expression of RFVT2, and HK2 kidney cells only with a low constitutive expression of RFVT1-3. Functional in vitro studies on A431 and HK2 cells using confocal microscopy showed that riboflavin uptake is mostly ATP dependent and primarily driven by endocytosis. Furthermore, riboflavin is partially trafficked to the mitochondria. Riboflavin uptake and trafficking was significantly higher in A431 than in healthy kidney cells. Thus, this manuscript supports the hypothesis that addressing the riboflavin internalization pathway may be highly valuable for tumor targeted drug delivery.

20.
Arterioscler Thromb Vasc Biol ; 38(1): 40-48, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191926

RESUMO

OBJECTIVE: The junctional adhesion molecule A (JAM-A) is physiologically located in interendothelial tight junctions and focally redistributes to the luminal surface of blood vessels under abnormal shear and flow conditions accompanying atherosclerotic lesion development. Therefore, JAM-A was evaluated as a target for molecularly targeted ultrasound imaging of transient endothelial dysfunction under acute blood flow variations. APPROACH AND RESULTS: Flow-dependent endothelial dysfunction was induced in apolipoprotein E-deficient mice (n=43) by carotid partial ligation. JAM-A expression was investigated by molecular ultrasound using antibody-targeted poly(n-butyl cyanoacrylate) microbubbles and validated with immunofluorescence. Flow disturbance and arterial remodeling were assessed using functional ultrasound. Partial ligation led to an immediate drop in perfusion at the ligated side and a direct compensatory increase at the contralateral side. This was accompanied by a strongly increased JAM-A expression and JAM-A-targeted microbubbles binding at the partially ligated side and by a moderate and temporary increase in the contralateral artery (≈14× [P<0.001] and ≈5× [P<0.001] higher than control, respectively), both peaking after 2 weeks. Subsequently, although JAM-A expression and JAM-A-targeted microbubbles binding persisted at a higher level at the partially ligated side, it completely normalized within 4 weeks at the contralateral side. CONCLUSIONS: Temporary blood flow variations induce endothelial rearrangement of JAM-A, which can be visualized using JAM-A-targeted microbubbles. Thus, JAM-A may be considered as a marker of acute endothelial activation and dysfunction. Its imaging may facilitate the early detection of cardiovascular risk areas, and it enables the therapeutic prevention of their progression toward an irreversible pathological state.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Estenose das Carótidas/diagnóstico por imagem , Moléculas de Adesão Celular/metabolismo , Endotélio Vascular/diagnóstico por imagem , Imagem Molecular/métodos , Receptores de Superfície Celular/metabolismo , Ultrassonografia , Animais , Biomarcadores/metabolismo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Estenose das Carótidas/fisiopatologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Embucrilato/administração & dosagem , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Imunofluorescência , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos Knockout para ApoE , Microbolhas , Receptores de Superfície Celular/genética , Fluxo Sanguíneo Regional , Fatores de Tempo , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...