Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1283960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152463

RESUMO

Background: The manufacturing processes of oolong tea significantly impact its nonvolatile components, leading to the emergence of distinct flavor attributes. Understanding the dynamic changes in nonvolatile components during the manufacturing stages of the Jinguanyin (JGY) cultivar is crucial for unraveling the potential mechanism behind flavor formation. Methods: Comprehensive metabolomics and sensomics analyses were conducted to investigate the dynamic changes in nonvolatile components throughout various phases of oolong tea processing, focusing on the JGY cultivar. Results: A total of 1,005 nonvolatile metabolites were detected, with 562 recognized as significant differential metabolites during various phases of oolong tea processing. Notably, the third turning-over, third setting, and high-temperature treatments exhibited the most significant effects on the nonvolatile metabolites of oolong tea. JGY finished tea demonstrated a characteristic flavor profile, marked by mellowness, sweetness in aftertaste, and a significant Yin rhyme. This flavor profile was collectively promoted by the accumulation of amino acids and organic acids, the decrease in flavonols (3-O-glycosides) and sugar substances, the alteration of phenolic acids, and the stabilization of caffeine. Conclusion: This study contribute to the understanding of the formation of oolong tea flavor qualities. The dynamic changes observed in various types of nonvolatile compounds during oolong tea processing shed light on the intricate interplay of metabolites and their influence on the final flavor characteristics.

2.
Food Chem X ; 17: 100586, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845464

RESUMO

Wuyi rock tea (WRT) is famous for its long history and unique characteristic of floral, fruity and nutty flavors. This study investigated the aroma characteristics of WRTs prepared from 16 different oolong tea plant varieties. The sensory evaluation results showed that all WRTs had an 'Yan flavor' taste, and the odor was strong and lasting. Roasted, floral and fruity odors were the prime aroma profiles for WRTs. Furthermore, a total of 368 volatile compounds were detected using HS-SPME-GC-MS and analyzed with OPLS-DA and HCA methods. The volatile compounds heterocyclic compounds, esters, hydrocarbons, terpenoids and ketones were the major aromatic components of the WRTs. Specifically, the volatile profiles among newly selected cultivars were comparatively analyzed, and 205 differential volatile compounds were found with variable importance in the projection (VIP) values above 1.0. These results indicated that the aroma profiles of WRTs were mainly dependent on the cultivar specificities of volatile compounds.

3.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807544

RESUMO

As important factors to oolong tea quality, the accumulation and dynamic change in aroma substances attracts great attention. The volatile composition of oolong tea is closely related to the precursor contents. Fatty acids (FAs) and their derivatives are basic components of oolong tea fragrance during the postharvest process. However, information about the precursors of FAs during the postharvest process of oolong tea production is rare. To investigate the transformation of fatty acids during the process of oolong tea production, gas chromatograph−flame ionization detection (GC-FID) was conducted to analyze the composition of FAs. The results show that the content of total polyunsaturated FAs initially increased and then decreased. Specifically, the contents of α-linolenic acid, linoleic acid and other representative substances decreased after the turn-over process of oolong tea production. The results of partial least squares discrimination analysis (PLS-DA) showed that five types of FAs were obviously impacted by the processing methods of oolong tea (VIP > 1.0). LOX (Lipoxygenase, EC 1.13.11.12) is considered one of the key rate-limiting enzymes of long-chain unsaturated FAs in the LOX-HPL (hydroperoxide lyase) pathway, and the mechanical wounding occurring during the postharvest process of oolong tea production greatly elevated the activity of LOX.


Assuntos
Camellia sinensis , Compostos Orgânicos Voláteis , Camellia sinensis/metabolismo , Ácidos Graxos/análise , Folhas de Planta/química , Chá , Compostos Orgânicos Voláteis/análise
4.
Front Plant Sci ; 12: 788469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154182

RESUMO

Understanding extensive transcriptional reprogramming events mediated by wounding during the oolong tea manufacturing process is essential for improving oolong tea quality. To improve our comprehension of the architecture of the wounding-induced gene regulatory network, we systematically analyzed the high-resolution transcriptomic and metabolomic data from wounding-treated (after turnover stage) tea leaves at 11 time points over a 220-min period. The results indicated that wounding activates a burst of transcriptional activity within 10 min and that the temporal expression patterns over time could be partitioned into 18 specific clusters with distinct biological processes. The transcription factor (TF) activity linked to the TF binding motif participated in specific biological processes within different clusters. A chronological model of the wounding-induced gene regulatory network provides insight into the dynamic transcriptional regulation event after wounding treatment (the turnover stage). Time series data of wounding-induced volatiles reveal the scientific significance of resting for a while after wounding treatment during the actual manufacturing process of oolong tea. Integrating information-rich expression data with information on volatiles allowed us to identify many high-confidence TFs participating in aroma formation regulation after wounding treatment by using weighted gene co-expression network analysis (WGCNA). Collectively, our research revealed the complexity of the wounding-induced gene regulatory network and described wounding-mediated dynamic transcriptional reprogramming events, serving as a valuable theoretical basis for the quality formation of oolong tea during the post-harvest manufacturing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...