Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 90(11): 113102, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779386

RESUMO

Fourier transform infrared (FTIR) spectroscopy is a widely used characterization technique for studying chemical compositions and light-matter interactions in the infrared range. However, it remains challenging to use conventional FTIR equipment to characterize materials that are environmentally sensitive and/or have rough surfaces due to their dynamic response to external stimuli (e.g., humidity) and light scattering from the sample surface. Here, we describe an approach enabling quantitative infrared spectroscopy measurements of these challenging samples, including transmittance, reflectance, and emissivity. We designed and 3D-printed a miniaturized environmental chamber that can be directly inserted into the sample holder of a conventional integrating sphere to perform total transmission and reflection measurements in controlled environments. Moreover, a calibration method was developed to exclude light scattering from rough surfaces of the sample and the distortion created by infrared windows. To illustrate the potential application of this method, we have performed quantitative infrared measurements, both specular and diffusive, on a sapphire standard reference with a specular surface, as well as a textile sample that has a rough surface and is dynamically responsive to changes in humidity. The calibrated results measured with the equipped chamber match those measured without the IR windows, demonstrating the viability of our environmental chamber and the proposed calibration method. This quantitative infrared spectroscopy measurement technique may help advance fields such as metasurfaces and adaptive textiles, where samples are often rough, dynamically responsive, and/or environmentally sensitive.

2.
Science ; 363(6427): 619-623, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30733415

RESUMO

The human body absorbs and loses heat largely through infrared radiation centering around a wavelength of 10 micrometers. However, neither our skin nor the textiles that make up clothing are capable of dynamically controlling this optical channel for thermal management. By coating triacetate-cellulose bimorph fibers with a thin layer of carbon nanotubes, we effectively modulated the infrared radiation by more than 35% as the relative humidity of the underlying skin changed. Both experiments and modeling suggest that this dynamic infrared gating effect mainly arises from distance-dependent electromagnetic coupling between neighboring coated fibers in the textile yarns. This effect opens a pathway for developing wearable localized thermal management systems that are autonomous and self-powered, as well as expanding our ability to adapt to demanding environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...