Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1984): 20221178, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36196543

RESUMO

Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type. We performed a meta-analysis of 37 studies, which experimentally crossed warming and precipitation treatments, to test whether biomass responses to combined effects of warming and precipitation extremes depended on plant woodiness and community type (monocultures versus mixtures). Our results confirmed that the effects of warming and precipitation extremes were overall additive. However, combined effects of warming and drought on above- and belowground biomass were less negative in woody- than in herbaceous plant systems and more negative in plant mixtures than in monocultures. We further show that drought effects on plant biomass were more negative in greenhouse, than in field studies, suggesting that greenhouse experiments may overstate drought effects in the field. Our results highlight the importance of plant system characteristics to better understand plant responses to climate change.


Assuntos
Secas , Ecossistema , Biomassa , Mudança Climática , Plantas
2.
Environ Int ; 154: 106551, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33857708

RESUMO

Air is a major conduit for the dispersal of organisms at the local and the global scale. Most research has focused on the dispersal of plants, vertebrates and human disease agents. However, the air represents a key dispersal medium also for bacteria, fungi and protists. Many of those represent potential pathogens of animals and plants and have until now gone largely unrecorded. Here we studied the turnover in composition of the entire aerobiome, the collective diversity of airborne microorganisms. For that we performed daily analyses of all prokaryotes and eukaryotes (including plants) using multi-marker high-throughput sequencing for a total of three weeks. We linked the resulting communities to local weather conditions, to assess determinants of aerobiome composition and distribution. We observed hundreds of microbial taxa, mostly belonging to spore-forming organisms including fungi, but also protists. Additionally, we detected many potential human- and plant-pathogens. Community composition fluctuated on a daily basis and was linked to concurrent weather conditions, particularly air pressure and temperature. Using network analyses, we identified taxonomically diverse groups of organisms with correlated temporal dynamics. In part, this was due to co-variation with environmental conditions, while we could also detect specific host-parasite interactions. This study provides the first full inventory of the aerobiome and identifies putative drivers of its dynamics in terms of taxon composition. This knowledge can help develop early warning systems against pathogens and improve our understanding of microbial dispersal.


Assuntos
Microbiota , Alérgenos , Bactérias/genética , Fungos/genética , Humanos , Microbiota/genética , Plantas
3.
J Environ Manage ; 260: 110126, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090825

RESUMO

Since the 1950s, agriculture has intensified drastically, which has led to a significant biodiversity decline on arable lands. This decline was especially dramatic for segetal plant species, the specialist species of cereal fields. Due to the low population density and poor dispersal abilities of many segetal species, the recovery of species-rich fields may fail even though the environmental conditions are suitable. Therefore, conservation efforts including active restoration measures aimed at recovering segetal vegetation are needed. To this purpose, we propose to alleviate dispersal limitation by means of topsoil translocation from a species-rich donor arable field. At two receiver sites, we tested this technique using two topsoil-spreading densities, i.e. 2.5Lsoil/m2 and 5Lsoil/m2 in experimental plots (3 m2). At one receiver site, we tested the impact of topsoil translocation from two different donor sites, while in the other receiver site one donor site was used. We compared plant species diversity and composition of treated plots with control plots as well as with the species composition of the donor sites (field survey) and their seed bank (greenhouse survey). Species richness was increased by topsoil spreading, including richness of threatened species. 33% and 71% of the threatened species were successfully translocated respectively at the two receiver sites. At one site, plant cover was also increased, including threatened species cover. Conversely, topsoil spreading did not promote pernicious species that could affect farmer acceptance negatively. Vegetation of translocated plots was more similar in terms of species composition to donor site seed banks than to donor site field survey. The higher spreading density led to increased species richness when seed bank in topsoil had lower density. Our results show that topsoil translocation can be a highly effective method for restoring threatened segetal plant communities in agricultural landscapes. Even when a full plant community was already present (Receiver 1) topsoil transfer led to a doubling in species richness. The seed bank surveys were a good indicator of plant community composition upon topsoil translocation in the field and are therefore advisable to implement in the project-planning phase to evaluate donor site potential. From our results, we recommend to spread soil at an overall rate of 500 seeds/m2 equivalent. Future studies need to assess the long-term fate of the translocated species as well as the impacts of soil harvests on the donor sites to establish sustainable use levels.


Assuntos
Ecossistema , Espécies em Perigo de Extinção , Animais , Biodiversidade , Plantas , Banco de Sementes , Sementes , Solo
4.
Glob Chang Biol ; 26(4): 2060-2071, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012421

RESUMO

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.

5.
Ecol Lett ; 22(7): 1145-1151, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31020756

RESUMO

Recent demonstrations of the role of plant-soil biota interactions have challenged the conventional view that vegetation changes are mainly driven by changing abiotic conditions. However, while this concept has been validated under natural conditions, our understanding of the long-term consequences of plant-soil interactions for above-belowground community assembly is restricted to mathematical and conceptual model projections. Here, we demonstrate experimentally that one-time additions of soil biota and plant seeds alter soil-borne nematode and plant community composition in semi-natural grassland for 20 years. Over time, aboveground and belowground community composition became increasingly correlated, suggesting an increasing connectedness of soil biota and plants. We conclude that the initial composition of not only plant communities, but also soil communities has a long-lasting impact on the trajectory of community assembly.


Assuntos
Nematoides , Plantas , Microbiologia do Solo , Animais , Biota , Solo
6.
Plant Soil ; 433(1): 147-156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30930494

RESUMO

BACKGROUND AND AIMS: Soil inoculation is a powerful tool for the restoration of terrestrial ecosystems. However, the origin of the donor material may differentially influence early- and late-successional plant species. Donor soil from late-succession stages may benefit target plant species due to a higher abundance of soil-borne mutualists. Arable soils, on the other hand, may suppress ruderals as they support more root herbivores that preferentially attack ruderal plant species, while mid-succession soils may be intermediate in their effects on ruderals and target species performance. We hypothesized that a mixture of arable and late-succession inocula may outperform pure late-successional inocula for restoration, by promoting late-successional target plants, while simultaneously reducing ruderal species' performance. METHODS: We conducted a glasshouse experiment and tested the growth of ruderal and target plant species on pure and mixed inocula. The inocula were derived from arable fields, mid-succession grasslands and late-succession heathlands and we created a replacement series testing different pairwise mixitures for each of these inocula types (ratios: 100:0, 75:25, 50:50, 25:75, 0:100 of inoculum A and B respectively). RESULTS: In general, we found that a higher proportion of heathland material led to a higher aboveground biomass of target plant species, while responses of ruderal species were variable. We found synergistic effects when specific inocula were mixed. In particular, a 50:50 mixture of heathland and arable soil in the inoculum led to a significant reduction in ruderal species biomass relative to the two respective pure inocula. The overall response was driven by Myosotis arvensis, since the other two ruderal species were not significantly affected. CONCLUSIONS: Mixing inocula from different successional stages can lead to synergistic effects on restoration, but this highly depends on the specific combination of inocula, the mixing ratio and plant species. This suggest that specific inocula may need to be developed in order to rapidly restore different plant communities.

7.
ISME J ; 11(3): 817-820, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27911440

RESUMO

Protists are major predators of bacteria in soils. However, it remains unknown how protists sense their prey in this highly complex environment. Here, we investigated whether volatile organic compounds (VOCs) of six phylogenetic distinct soil bacteria affect the performance of three different soil protists and how that relates to direct feeding interactions. We observed that most bacteria affected protist activity by VOCs. However, the response of protists to the VOCs was strongly dependent on both the bacterial and protist interacting partner. Stimulation of protist activity by volatiles and in direct trophic interaction assays often coincided, suggesting that VOCs serve as signals for protists to sense suitable prey. Furthermore, bacterial terpene synthase mutants lost the ability to affect protists, indicating that terpenes represent key components of VOC-mediated communication. Overall, we demonstrate that volatiles are directly involved in protist-bacterial predator-prey interactions.


Assuntos
Bactérias/metabolismo , Eucariotos/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Microbiologia do Solo
8.
Nat Plants ; 2: 16107, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27398907

RESUMO

Many natural ecosystems have been degraded because of human activities(1,2) and need to be restored so that biodiversity is protected. However, restoration can take decades and restoration activities are often unsuccessful(3) because of abiotic constraints (for example, eutrophication, acidification) and unfavourable biotic conditions (for example, competition or adverse soil community composition). A key question is what manageable factors prevent transition from degraded to restored ecosystems and what interventions are required for successful restoration(2,4). Experiments have shown that the soil community is an important driver of plant community development(5-8), suggesting that manipulation of the soil community is key to successful restoration of terrestrial ecosystems(3,9). Here we examine a large-scale, six-year-old field experiment on ex-arable land and show that application of soil inocula not only promotes ecosystem restoration, but that different origins of soil inocula can steer the plant community development towards different target communities, varying from grassland to heathland vegetation. The impact of soil inoculation on plant and soil community composition was most pronounced when the topsoil layer was removed, whereas effects were less strong, but still significant, when the soil inocula were introduced into intact topsoil. Therefore, soil inoculation is a powerful tool to both restore disturbed terrestrial ecosystems and steer plant community development.


Assuntos
Biodiversidade , Recuperação e Remediação Ambiental , Pradaria , Microbiologia do Solo , Países Baixos
9.
BMC Plant Biol ; 12: 3, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22217252

RESUMO

BACKGROUND: Previous studies on the reproductive biology of ferns showed that mating strategies vary among species, and that polyploid species often show higher capacity for self-fertilization than diploid species. However, the amount of intraspecific variation in mating strategy and selfing capacity has only been assessed for a few species. Yet, such variation may have important consequences during colonization, as the establishment of any selfing genotypes may be favoured after long-distance dispersal (an idea known as Baker's law). RESULTS: We examined intra-and interspecific variation in potential for self-fertilization among four rare fern species, of which two were diploids and two were tetraploids: Asplenium scolopendrium (2n), Asplenium trichomanes subsp. quadrivalens (4n), Polystichum setiferum (2n) and Polystichum aculeatum (4n). Sporophyte production was tested at different levels of inbreeding, by culturing gametophytes in isolation, as well as in paired cultures with a genetically different gametophyte. We tested gametophytes derived from various genetically different sporophytes from populations in a recently planted forest colonized through long-distance dispersal (Kuinderbos, the Netherlands), as well as from older, less disjunct populations.Sporophyte production in isolation was high for Kuinderbos genotypes of all four species. Selfing capacity did not differ significantly between diploids and polyploids, nor between species in general. Rather selfing capacity differed between genotypes within species. Intraspecific variation in mating system was found in all four species. In two species one genotype from the Kuinderbos showed enhanced sporophyte production in paired cultures. For the other species, including a renowned out crosser, selfing capacity was consistently high. CONCLUSIONS: Our results for four different species suggest that intraspecific variation in mating system may be common, at least among temperate calcicole ferns, and that genotypes with high selfing capacity may be present among polyploid as well as diploid ferns. The surprisingly high selfing capacity of all genotypes obtained from the Kuinderbos populations might be due to the isolated position of these populations. These populations may have established through single-spore colonization, which is only possible for genotypes capable of self-fertilization. Our results therewith support the idea that selection for selfing genotypes may occur during long-distance colonization, even in normally outcrossing, diploid ferns.


Assuntos
Gleiquênias/fisiologia , Poliploidia , Autofertilização , DNA de Plantas/genética , Gleiquênias/genética , Genótipo , Células Germinativas Vegetais/fisiologia , Modelos Logísticos , Reprodução , Especificidade da Espécie
10.
Am J Bot ; 98(11): e319-22, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22012927

RESUMO

PREMISE OF THE STUDY: Studies on the biogeography and population genetics of the widespread European rock ferns Asplenium scolopendrium, A. trichomanessubsp. quadrivalens, Polystichum setiferum, and P. aculeatumwould potentially yield interesting new insights into the colonization capacities of ferns. Markers with sufficient resolution for detailed genetic studies are, however, not yet available. METHODS AND RESULTS: Using genome screening with intersimple sequence repeat (ISSR) primers, a total of 16 different microsatellite markers were isolated and characterized for the four species. Some of these markers could be exchanged within each congeneric pair. CONCLUSIONS: The developed primer sets will be very useful for analyses of the biogeography and population genetics of some widespread calcicole ferns. The observed cross-amplification rates suggest a high potential for application on additional species from the same genera.


Assuntos
Gleiquênias/genética , Amplificação de Genes/genética , Repetições de Microssatélites , Polimorfismo Genético , Alelos , Primers do DNA , DNA de Plantas , Europa (Continente) , Genética Populacional , Filogeografia , Especificidade da Espécie
11.
Ann Bot ; 106(4): 583-90, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20682575

RESUMO

BACKGROUND AND AIMS: Human-mediated environmental change is increasing selection pressure for the capacity in plants to colonize new areas. Habitat fragmentation combined with climate change, in general, forces species to colonize areas over longer distances. Mating systems and genetic load are important determinants of the establishment and long-term survival of new populations. Here, the mating system of Asplenium scolopendrium, a diploid homosporous fern species, is examined in relation to colonization processes. METHODS: A common environment experiment was conducted with 13 pairs of sporophytes, each from a different site. Together they constitute at least nine distinct genotypes, representing an estimated approx. 95 % of the non-private intraspecific genetic variation in Europe. Sporophyte production was recorded for gametophytes derived from each parent sporophyte. Gametophytes were grown in vitro in three different ways: (I) in isolation, (II) with a gametophyte from a different sporophyte within the same site or (III) with a partner from a different site. KEY RESULTS: Sporophyte production was highest in among-site crosses (III), intermediate in within-site crosses (II) and was lowest in isolated gametophytes (I), strongly indicating inbreeding depression. However, intragametophytic selfing was observed in most of the genotypes tested (eight out of nine). CONCLUSIONS: The results imply a mixed mating system in A. scolopendrium, with outcrossing when possible and occasional selfing when needed. Occasional intragametophytic selfing facilitates the successful colonization of new sites from a single spore. The resulting sporophyte, which will be completely homozygous, will shed large amounts of spores over time. Each year this creates a bed of gametophytes in the vicinity of the parent. Any unrelated spore which arrives is then selectively favoured to reproduce and contribute its genes to the new population. Thus, while selfing facilitates initial colonization success, inbreeding depression promotes genetically diverse populations through outcrossing. The results provide further evidence against the overly simple dichotomous distinction of fern species as either selfing or outcrossing.


Assuntos
Gleiquênias/fisiologia , Gleiquênias/crescimento & desenvolvimento , Células Germinativas Vegetais/fisiologia , Endogamia , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...