Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(29): 26391-26404, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521636

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is a remarkable elemental identification and quantification technique used in multiple sectors, including science, engineering, and medicine. Machine learning techniques have recently sparked widespread interest in the development of calibration-free LIBS due to their ability to generate a defined pattern for complex systems. In geotechnical engineering, understanding soil mechanics in relation to the applications is of paramount importance. The knowledge of soil unconfined compressive strength (UCS) enables engineers to identify the behaviors of a particular soil and propose effective solutions to given geotechnical problems. However, the experimental techniques involved in the measurements of soil UCS are incredibly expensive and time-consuming. In this work, we develop a pioneering technique to estimate the soil unconfined compressive strength using artificial intelligent methods based on the spectra obtained from the LIBS system. Decision tree regression (DTR) and support vector regression learners were initially employed, and consequently, the adaptive boosting method was applied to improve the performance of the two single learners. The prediction power of the established models was determined using the standard performance evaluation metrics such as the root-mean-square error, CC between the predicted and actual soil UCS values, mean absolute error, and R2 score. Our results revealed that the boosted DTR exhibited the highest coefficient of correlation of 99.52% and an R2 value of 99.03% during the testing phase. To validate the models, the UCS values of soils stabilized with lime and cement were predicted with an optimum degree of accuracy, confirming the models' suitability and generalization strength for soil UCS investigations.

2.
Materials (Basel) ; 15(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36556836

RESUMO

Earth materials have been used in construction as safe, healthy and environmentally sustainable. It is often challenging to develop an optimum soil mix because of the significant variations in soil properties from one soil to another. The current study analyzed the soil properties, including the grain size distribution, Atterberg limits, compaction characteristics, etc., using multilinear regression (MLR) and artificial neural networks (ANN). Data collected from previous studies (i.e., 488 cases) for stabilized (with either cement or lime) and unstabilized soils were considered and analyzed. Missing data were estimated by correlations reported in previous studies. Then, different ANNs were designed (trained and validated) using Levenberg-Marquardt (L-M) algorithms. Using the MLR, several models were developed to estimate the compressive strength of both unstabilized and stabilized soils with a Pearson Coefficient of Correlation (R2) equal to 0.2227 and 0.766, respectively. On the other hand, developed ANNs gave a higher value for R2 than MLR (with the highest value achieved at 0.9883). Thereafter, an experimental program was carried out to validate the results achieved in this study. Finally, a sensitivity analysis was carried out using the resulting networks to assess the effect of different soil properties on the unconfined compressive strength (UCS). Moreover, suitable recommendations for earth materials mixes were presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...