Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 25(20): 4683-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26323872

RESUMO

We describe the design and synthesis of novel bivalent ligands based on the conjugation of 4-anilidopiperidine derivatives with enkephalin analogues. The design of non-peptide analogues is explored with 5-amino substituted (tetrahydronaphthalen-2yl) methyl containing 4-anilidopiperidine derivatives, while non-peptide-peptide ligands are explored by conjugating the C-terminus of enkephalin analogues (H-Xxx-DAla-Gly-Phe-OH) to the amino group of 4-anilidopiperidine small molecule derivatives with and without a linker. These novel bivalent ligands are evaluated for biological activities at µ and δ opioid receptors. They exhibit very good affinities at µ and δ opioid receptors, and potent agonist activities in MVD and GPI assays. Among these the lead bivalent ligand 17 showed excellent binding affinities (0.1 nM and 0.5 nM) at µ and δ opioid receptors respectively, and was found to have very potent agonist activities in MVD (56 ± 5.9 nM) and GPI (4.6 ± 1.9 nM) assays. In vivo the lead bivalent ligand 17 exhibited a short duration of action (<15 min) comparable to 4-anilidopiperidine derivatives, and moderate analgesic activity. The ligand 17 has limited application against acute pain but may have utility in settings where a highly reversible analgesic is required.


Assuntos
Analgésicos/farmacologia , Desenho de Fármacos , Encefalinas/farmacologia , Contração Muscular/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Piperidinas/farmacologia , Receptores Opioides/agonistas , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Relação Dose-Resposta a Droga , Encefalinas/administração & dosagem , Encefalinas/química , Cobaias , Ligantes , Camundongos , Conformação Molecular , Medição da Dor/efeitos dos fármacos , Piperidinas/administração & dosagem , Piperidinas/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
2.
Bioorg Med Chem ; 23(18): 6185-94, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26299827

RESUMO

A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on µ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the µ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the µ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the µ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity.


Assuntos
Amidas/química , Receptores Opioides/química , Amidas/síntese química , Amidas/farmacocinética , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Ligantes , Masculino , Antagonistas de Entorpecentes/síntese química , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacocinética , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores Opioides/metabolismo , Receptores Opioides delta/química , Receptores Opioides delta/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...