Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38712281

RESUMO

Non-alcoholic fatty liver disease (NAFLD) - characterized by excess accumulation of fat in the liver - now affects one third of the world's population. As NAFLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply-characterized cohort of patients spanning the full histopathologic spectrum of NAFLD. CRISPR-based genetic knockout of the top 100 TFs identified ZNF469 as a regulator of collagen expression in primary human hepatic stellate cells (HSCs). Gain- and loss-of-function studies established that ZNF469 regulates collagen genes and genes involved in matrix homeostasis through direct binding to gene bodies and regulatory elements. By integrating multiomic large-scale profiling of human biopsies with extensive experimental validation we demonstrate that ZNF469 is a transcriptional regulator of collagen in HSCs. Overall, these data nominate ZNF469 as a previously unrecognized determinant of NAFLD-associated liver fibrosis.

2.
iScience ; 24(11): 103323, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34805786

RESUMO

BET bromodomain inhibitors hold promise as therapeutic agents in diverse indications, but their clinical progression has been challenging and none have received regulatory approval. Early clinical trials in cancer have shown heterogeneous clinical responses, development of resistance, and adverse events. Increased understanding of their mechanism(s) of action and identification of biomarkers are needed to identify appropriate indication(s) and achieve efficacious dosing. Using genome-wide CRISPR-Cas9 screens at different concentrations, we report molecular mechanisms defining cellular responses to BET inhibitors, some of which appear specific to a single compound concentration. We identify multiple transcriptional regulators and mTOR pathway members as key determinants of JQ1 sensitivity and two Ca2+/Mn2+ transporters, ATP2C1 and TMEM165, as key determinants of JQ1 resistance. Our study reveals new molecular mediators of BET bromodomain inhibitor effects, suggests the involvement of manganese, and provides a rich resource for discovery of biomarkers and targets for combination therapies.

3.
Angew Chem Int Ed Engl ; 54(5): 1551-5, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25475886

RESUMO

We report a multi-objective de novo design study driven by synthetic tractability and aimed at the prioritization of computer-generated 5-HT2B receptor ligands with accurately predicted target-binding affinities. Relying on quantitative bioactivity models we designed and synthesized structurally novel, selective, nanomolar, and ligand-efficient 5-HT2B modulators with sustained cell-based effects. Our results suggest that seamless amalgamation of computational activity prediction and molecular design with microfluidics-assisted synthesis enables the swift generation of small molecules with the desired polypharmacology.


Assuntos
Ligantes , Receptor 5-HT2B de Serotonina/química , Aminas/síntese química , Aminas/química , Desenho Assistido por Computador , Desenho de Fármacos , Humanos , Microfluídica , Ligação Proteica , Receptor 5-HT2B de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...