Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1386646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746935

RESUMO

Background: Observational studies have shown that micronutrients can affect the occurrence of frailty. However, it is not clear whether there is a causal relationship between the two. This study aimed to explore the causal relationship between circulating micronutrient levels and frailty risk using a two-sample Mendelian randomization (TSMR) approach. Methods: We gathered and screened instrumental variables (IVs) for six circulating micronutrients, including vitamin B12, vitamin B6, folate, vitamin C, vitamin D, and vitamin E, from published genome-wide association studies (GWAS) and the IEU OpenGWAS open database. Summary statistics for frailty were obtained from a GWAS meta-analysis, including the UK Biobank and TwinGene (N = 175,226). We performed two independent TSMR analyses and a meta-analysis based on the two independent MR estimates to assess the causal relationship between circulating micronutrientn and frailty. Results: Our study found, no causal relationship between genetically predicted vitamin D (ß = -0.059, p = 0.35), vitamin B6 (ß = 0.006, p = 0.80), vitamin E (ß = -0.011, p = 0.79), vitamin C (ß = -0.044, p = 0.06), vitamin B12 (ß = -0.027, p = 0.37), and folate (ß = 0.029, p = 0.17), with frailty. Conclusion: This study showed that these six micronutrients did not reduce the risk of developing frailty. However, we think it is necessary further to investigate the relationship and mechanisms between micronutrients and frailty using methods such as randomized controlled trials.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38366876

RESUMO

Sarcopenia is among the most common musculoskeletal illnesses, yet its underlying biochemical mechanisms remain incompletely understood. In this study, we used Mendelian randomization (MR) to investigate the causal relationship between the genetically determined blood metabolites and sarcopenia, with the overall objective of identifying likely molecular pathways for sarcopenia. We used 2-sample MR to investigate the effects of blood metabolites on sarcopenia-related traits. 452 metabolites were exposure, and 3 sarcopenia-related traits as the outcomes: handgrip strength, appendicular lean mass, and walking pace. The inverse-variance weighted (IVW) causal estimates were determined. For sensitivity analysis, methods such as MR-Egger regression, the weighted median, the weighted mode, and the heterogeneity test were used. Additionally, for complementation, we performed replication, meta-analysis, and metabolic pathway analyses. Candidate biomarkers were defined by meeting one of the following criteria: (1) significant metabolites are defined as pIVW < pBonferroni [1.11 × 10-4 (.05/452)]; (2) strong metabolites are defined as 4 MR methods p < .05; and (3) suggestive metabolites are defined as passing sensitivity analysis. Three metabolites (creatine, 1-arachidonoylglycerophosphocholine, and pentadecanoate [15:0]) with significant causality, 3 metabolites (glycine, 1-arachidonoylglycerophosphocholine, and epiandrosterone sulfate) with strong causality, and 25 metabolites (including leucylleucin, pyruvic acid, etc.) with suggestive causality were associated with sarcopenia-related traits. After further replication analyses and meta-analysis, these metabolites maintained substantial effects on sarcopenia-related traits. We additionally identified 14 important sarcopenia-related trait metabolic pathways. By combining metabolomics with genomics, these candidate metabolites and metabolic pathways identified in our study may provide new clues regarding the mechanisms underlying sarcopenia.


Assuntos
Força da Mão , Sarcopenia , Humanos , Análise da Randomização Mendeliana , Sarcopenia/genética , Metaboloma , Fenótipo , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...