Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 28(38): e202200492, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502815

RESUMO

Highly energetic 1-(azidomethyl)-5H-tetrazole (AzMT, 3) has been synthesized and characterized. This completes the series of 1-(azidoalkyl)-5H-tetrazoles represented by 1-(azidoethyl)-5H-tetrazole (AET) and 1-(azidopropyl)-5H-tetrazole (APT). AzMT was thoroughly analyzed by single-crystal X-ray diffraction experiments, elemental analysis, IR spectroscopy and multinuclear (1 H, 13 C, 14 N, 15 N) NMR measurements. Several energetic coordination compounds (ECCs) of 3d metals (Mn, Fe, Cu, Zn) and silver in combination with anions such as (per)chlorate, mono- and dihydroxy-trinitrophenolate were prepared, giving insight into the coordination behavior of AzMT as a ligand. The synthesized ECCs were also analyzed by X-ray diffraction experiments, elemental analysis, and IR spectroscopy. Differential thermal analysis for all compounds was conducted, and the sensitivity towards external stimuli (impact, friction, and ESD) was measured. Due to the high enthalpy of formation of AzMT (+654.5 kJ mol-1 ), some of the resulting coordination compounds are extremely sensitive, yet are able to undergo deflagration-to-detonation transition (DDT) and initiate pentaerythritol tetranitrate (PETN). Therefore, they are to be ranked as primary explosives.

2.
Chem Asian J ; 16(19): 3001-3012, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34411440

RESUMO

For the first time, an adequate selective synthesis, circumventing the formation of 2-hydroxy-5H-tetrazole, of 1-hydroxy-5H-tetrazole (HTO), as well as the synthesis of bis(1-hydroxytetrazol-5-yl)triazene (H3 T) are reported. Several salts thereof were synthesized and characterized which resulted in the formation of new primary and secondary explosives containing the 1-oxidotetrazolate unit. Molecular structures are characterized by single-crystal X-ray diffraction, 1 H and 13 C NMR, IR, and elemental analysis. Calculation of the detonation performance using the Explo5 code confirmed the energetic properties of 1-hydroxy-5H-tetrazole. The detonation properties can be adjusted to the requirements for those of a secondary explosive by forming the hydroxylammonium (6) or hydrazinium (7) salts, or to meet the requirements of a primary explosive by forming the silver salt 4, which shows a fast DDT on contact with a flame. The sensitivities of all compounds towards external stimuli such as impact, friction, and electrostatic discharge were measured.

3.
Inorg Chem ; 60(15): 10909-10922, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34292708

RESUMO

In recent years, development of new energetic compounds and formulations, suitable for ignition with relatively low-power lasers, is a highly active and competitive field of research. The main goal of these efforts is focused on achieving and providing much safer solutions for various detonator and initiator systems. In this work, we prepared, characterized, and studied thermal and ignition properties of a new laser-ignitable compound, based on the 5,6-bis(ethylnitroamino)-N'2,N'3-dihydroxypyrazine-2,3-bis(carboximidamide) (DS3) proligand. This new energetic proligand was prepared in three steps, starting with 5,6-bis(ethylamino)-pyrazine-2,3-dicarbonitrile. Crystallography studies of the DS3-derived Cu(II) complex (DS4) revealed a unique stacked antenna-type structure of the latter compound. DS4 has an exothermal temperature of 154.5 °C and was calculated to exhibit a velocity of detonation of 6.36 km·s-1 and a detonation pressure of 15.21 GPa. DS4 showed properties of a secondary explosive, having sensitivity to impact, friction, and electrostatic discharge of 8 J, 360 N, and 12 mJ, respectively. In order to study the mechanism of ignition by a laser (using a diode laser, 915 nm), we conducted a set of experiments that enabled us to characterize a photothermal ignition mechanism. Furthermore, we found that a single pulse, with a time duration of 1 ms and with a total energy of 4.6 mJ, was sufficient for achieving a consistent and full ignition of DS4. Dual-pulse experiments, with variable time intervals between the laser pulses, showed that DS4 undergoes ignition via a photothermal mechanism. Finally, calculating the chemical mechanism of the formation of the complex DS4 and modeling its anhydrous and hydrated crystal structures (density functional theory calculations using Gaussian and HASEM software) allowed us to pinpoint a more precise location of water molecules in experimental crystallographic data. These results suggest that DS4 has potential for further development to a higher technology readiness level and for integration into small-size safe detonator systems as for many civil, aerospace, and defense applications.

4.
Dalton Trans ; 50(31): 10811-10825, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34291271

RESUMO

1- and 2-Nitratoethyl-5H-tetrazole (1-NET and 2-NET) were prepared through nitration of the respective alkyl alcohol using 100% nitric acid. A mixture of 1- and 2-hydroxyethyl-5H-tetrazole was obtained after alkylation of 1,5H-tetrazole. Also, a one-pot synthesis of 1-hydroxyethyl-5H-tetrazole was developed enabling the selective preparation of 1-NET. Both organic nitrates were characterized by 1H, 13C, and 1H-15N HMBC NMR spectroscopy. In addition, calculations using the Hirshfeld method and the EXPLO5 code were performed. Principally, 20 energetic coordination compounds involving the d-metals Mn, Cu, Zn, and Ag, each structurally characterized by low temperature single crystal X-ray diffraction, were prepared based on 1-NET and 2-NET. Of these complexes, 18 were obtained as pure bulk materials, and therefore, characterized for impact, friction, and ball drop impact sensitivity, as well as electrostatic discharge and thermal stability using differential thermal analysis. Hot plate and hot needle tests were performed mostly showing strong deflagrations making the complexes candidates for green combustion catalysts. Furthermore, successful PETN initiation experiments were carried out for several complexes and all ECCs were investigated by laser ignition experiments.

5.
Chemistry ; 27(35): 9112-9123, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33899986

RESUMO

Dinitraminic acid (HN(NO2 )2 , HDN) was prepared by ion exchange chromatography and acid-base reaction with basic copper(II) carbonate allowed the in situ preparation of copper(II) dinitramide, which was reacted with twelve nitrogen-rich ligands, for example, 4-amino-1,2,4-triazole, 1-methyl-5H-tetrazole, di(5H-tetrazolyl)-methane/-ethane/-propane/-butane. Nine of the complexes were investigated by low-temperature X-ray diffraction. In addition, all compounds were investigated by infrared spectroscopy (IR), differential thermal analysis (DTA), elemental analysis (EA) and thermogravimetric analysis (TGA) for selected compounds. Furthermore, investigations of the materials were carried out regarding their sensitivity toward impact (IS), friction (FS), ball drop impact (BDIS) and electrostatic discharge (ESD). In addition, hot plate and hot needle tests were performed. Complex [Cu(AMT)4 (H2 O)](DN)2 , based on 1-amino-5-methyltetrazole (AMT), is most outstanding for its detonative behavior and thus also capable of initiating PETN in classical initiation experiments. Laser ignition experiments at a wavelength of 915 nm were performed for all substances and solid-state UV-Vis spectra were recorded to apprehend the ignition mechanism.

6.
Inorg Chem ; 60(7): 4816-4828, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33724006

RESUMO

Ethylenedinitramine (H2EDN, 1) was prepared in a simple manner and with a high overall yield by direct nitration of 2-imidazolidinone using 100% HNO3 at 0 °C and subsequent hydrolysis in water at 100 °C. The versatility of 1 allows its application as starting material for a broad range of different materials. It was used for the preparation of both various salts and cocrystalline materials incorporating varying amounts of the TATOT moiety. Furthermore, H2EDN was successfully applied in the concept of energetic coordination compounds (ECCs) resulting in five copper(II) and two silver(I) complexes. A reaction path for the direct precipitation or slow crystallization of 17 different salts, including several alkali, alkaline earth, silver, and nitrogen-rich samples, is presented. The substances were extensively characterized by low-temperature single-crystal X-ray diffraction, elemental analysis (EA), IR spectroscopy, differential thermal analysis (DTA), and thermogravimetric analysis (TGA), proving their high thermal stability, especially of the alkali salts. In addition, 1 and all salts were characterized by 1H, 13C, and 14N NMR, whereas 1 was also investigated using the beneficial 1H-15N HMBC NMR spectroscopy. The sensitivities toward various mechanical stimuli according to BAM standard methods, as well as ball drop impact and electrostatic discharge (ESD) were determined using the BAM 1-out-6 method. Hot plate and hot needle tests were performed, followed by further characterization of the copper(II)-based ECCs through laser ignition experiments and UV-vis spectroscopy, offering new candidates for nontoxic, less sensitive laser-ignitable materials. Several detonation parameters were calculated using EXPLO5 (V6.05.02).

7.
Inorg Chem ; 59(24): 17875-17879, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33270434

RESUMO

The almost ancient and very sensitive silver fulminate (SF), which was involved in the establishment of fundamental chemical concepts, was desensitized for the first time with different nitrogen-rich triazoles and tetrazoles, yielding SF complexes [Agx(CNO)x(N-Ligand)y] (x = 1-4; y = 1-3). These were accurately characterized (X-ray diffraction, scanning electron microscopy, IR, elemental analysis, differential thermal analysis, and thermogravimetric analysis) and investigated concerning their energetic character. The highly energetic coordination compounds suddenly show, in contrast to SF, sensitivities in a manageable range and are therefore safer to handle. In particular, compounds [Ag4(CNO)4(BTRI)] [3; BTRI = 4,4'-bis(1,2,4-triazole)] and [Ag4(CNO)4(2,2-dtp)] [8; 2,2-dtp = 1,3-di(tetrazol-1-yl)propane] show values in the range of desired lead styphnate alternatives with similar energetic performances. The crystal structure experiments reveal silver cluster formation in all complexes with distinct argentophilic interactions close to 2.77 Å. Furthermore, it was possible to synthesize 8 in a one-pot reaction, avoiding the isolation of highly sensitive SF.

8.
Inorg Chem ; 59(15): 10938-10952, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32660244

RESUMO

N,N-Substituted ditetrazolylalkanes are widely used molecules in the field of coordination chemistry and are known with different alkyl chain lengths. The missing fragment within this row is presented by the elementary methylene-bridged ditetrazoles. The three different isomers (di(tetrazol-1-yl)methane (1,1-dtm, 1), (tetrazol-1-yl)(tetrazol-2-yl)methane (1,2-dtm, 2), and di(tetrazol-2-yl)methane (2,2-dtm, 3)) were synthesized in a convenient one-step reaction. All of them were successfully incorporated as neutral ligands in 15 new energetic coordination compounds (ECC) based on Cu2+ and Ag+ as well as different anions (nitrate, picrate (PA), styphnate (TNR), trinitrophloroglucinate (TNPG), and perchlorate) revealing an extraordinary coordination behavior of the ligands compared to other 5H-ditetrazolylalkanes. All compounds were extensively characterized using single-crystal X-ray diffraction experiments, infrared spectroscopy (IR), elemental analysis (EA), and differential thermal analysis (DTA). Furthermore, the sensitivities were determined using standard techniques, and Hirshfeld surface calculations of the ligands were applied to explain their significant divergences to external stimuli. The ECC possess very good exothermic decomposition temperatures up to 242 °C. The ignition of all colored complexes was tested in laser experiments, and two copper(II) perchlorate compounds showed promising results in classic initiation capability tests using pentaerythritol tetranitrate (PETN).

9.
Chempluschem ; 85(4): 769-775, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270929

RESUMO

Following the useful concept of energetic coordination compounds (ECC), copper(II) dicyanamide was used as a building block for the synthesis of eight new complexes. As ligands, six different N-substituted tetrazoles were applied, leading to the formation of high-nitrogen containing complexes. The obtained compounds were characterized in detail by single crystal as well as powder XRD, IR, EA, DTA, and TGA. In addition, the sensitivities towards impact and friction were determined with BAM standard techniques as well as the sensitivity towards electrostatic discharges. All compounds show moderate sensitivities (IS>6, FS>80 N) and energetic properties but differ in their polymeric structures forming polymeric chains or layers up to 3D networks.

10.
Angew Chem Int Ed Engl ; 59(30): 12367-12370, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32237192

RESUMO

A concept for stabilizing highly sensitive and explosive copper(II) azide with 1-N-substituted tetrazoles is described. It was possible to stabilize the system by the use of highly endothermic, nitrogen-rich ligands. The sensitivities of the resulting energetic copper coordination compounds can be tuned further by variation of the alkyl chain of the ligands and by phlegmatization of the complexes with classical additives during the synthesis. It is demonstrated, using the compound based on 1-methyl-5H-tetrazole ([Cu(N3 )2 (MTZ)], 1) that this class of complexes can be applied as a potential replacement for both lead azide (LA) and lead styphnate (LS). The complex was extensively investigated according to its chemical (elemental analysis, single-crystal and powder X-ray diffraction, IR spectroscopy, scanning electron microscopy) and physico-chemical properties (differential thermal analysis, sensitivities towards impact, friction, and electrostatic discharge) compared to pure copper(II) azide.

11.
Chem Sci ; 11(11): 3042-3047, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34122808

RESUMO

We report the synthesis and first characterisation of the novel chemical probe 3-bromotetrazine and establish its reactivity towards nucleophiles. This led to the synthesis of several novel classes of 3-monosubstituted s-tetrazines. A remarkable functional group selectivity is observed and is utilised to site-selectively functionalise different complex molecules. The stability of 3-bromotetrazine under the reaction conditions facilitated the development of a protocol for protein functionalisation, which enabled a "minimal", bifunctional tetrazine unit as a bio-orthogonal handle for inverse electron demand Diels-Alder reactions. Additionally, a novel tetrazine-based chemical probe was developed and its application in the context of thiol-targeted natural product isolation and labelling of mammalian cells is demonstrated.

12.
Chem Asian J ; 14(11): 2018-2028, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30942533

RESUMO

Energetic coordination compounds (ECC) based on 3d or 4d transition metals show promising characteristics to be used as potential replacements for highly toxic lead-containing primary explosives. Herein we report the synthesis of 12 new ECC based on 1-azidoethyl-5H-tetrazole (AET) or 1-ethyl-5H-tetrazole (1-ETZ) as nitrogen-rich ligands as well as various central metals (Cu2+ , Fe2+ , Zn2+ , Ag+ ) and anions such as perchlorate and nitrate. The influence of the increased endothermicity by adding an additional azide group was studied by comparing analogous ECC based on AET and 1-ETZ. Furthermore, the compounds were extensively analyzed by XRD, IR, EA, solid-state UV/Vis, and DTA as well as their sensitivities toward impact and friction were determined with BAM standard techniques, together with their sensitivity against electrostatic discharge. The sensitivities were compared with the one toward ball drop impact measurements. Classical initiation tests (nitropenta filled detonators) and ignition by laser irradiation highly prove the potential use of the most promising compounds in lead-free initiation systems.

13.
Chemistry ; 25(8): 1963-1974, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30144189

RESUMO

This unique complex study describes two isomeric aminotriazoles as auspicious nitrogen-rich ligands for energetic coordination compounds (ECCs) to replace the commonly used highly poisonous and environmentally harmful lead-based primary explosives. The triazoles were obtained by easily scalable and convenient synthetic routes starting solely from commercially available starting materials. 1-Amino-1,2,3-triazole (1, 1-ATRI) and, for the first time, 1-amino-1,2,4-triazole (2, 1A-1,2,4-TRI) were employed as ligands to form highly energetic transition-metal(II) complexes. The desired characteristics could be altered successively by using various nonpoisonous metal(II) centers (Cu2+ , Mn2+ , Fe2+ , and Zn2+ ) and anions (Cl- , NO3 - , ClO3 - , ClO4 - , picrate, styphnate, 2,4,6-trinitro-3-hydroxyphenolate, and 2,4,6-trinitro-3,5-dihydroxyphenolate). The 14 synthesized coordination compounds were characterized comprehensively by XRD, IR and UV/Vis spectroscopy, elemental analysis, and differential thermal and thermogravimetric analyses. Ball-drop impact, electrostatic discharge (ESD), and mechanical (impact and friction) sensitivities were determined according to BAM standard methods. In addition to laser ignition experiments, selected ECCs were evaluated in classical secondary explosive initiation tests (detonators filled with pentaerythritol tetranitrate (nitropenta)), which revealed their enormous potential and proved them to be very attractive for future applications in explosives.

14.
Inorg Chem ; 57(13): 7940-7949, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29927245

RESUMO

Because of the ongoing very challenging search for potential replacements of the currently used toxic lead-based primary explosives, new synthetic strategies have to be developed. In particular, the smart concept of energetic coordination compounds (ECC) has proven to hold great potential to solve this difficult and complex problem. The herein-described approach combines the exotic and neglected class of copper(II) bromate ECC with different environmentally friendly nitrogen-rich heterocycles, which exhibit the energetic properties of powerful primary explosives. The concept is the simple adjustment of the energetic properties of the complexes through alteration of the corresponding azoles. Six new copper(II) bromate complexes with reasonable sensitivities are featured in this study, which were synthesized in a practical and straightforward fashion, assured through easy access to copper(II) bromate obtained by metathesis reaction. Obtained compounds were comprehensively characterized through various analytical methods such as low-temperature X-ray diffraction, IR spectroscopy, and elemental analysis. Their sensitivities toward impact and friction were assessed through BAM standard techniques, together with their sensitivity against electrostatic discharge. Evaluation of the energetic properties of the newly synthesized compounds included examination of the respective thermal stabilities by differential thermal analysis. Furthermore, the complexes were tested regarding their behavior toward laser irradiation. Additionally, to receive insight into a possible correlation between the laser-investigated compounds' optical absorption and their ability to ignite by exposure to laser irradiation, UV-vis-near-IR spectra were recorded.

15.
J Am Chem Soc ; 140(9): 3206-3209, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29451790

RESUMO

A convenient synthetic route toward new copper(II) chlorate complexes with potential use in modern advanced ignition or initiation systems is described. Obtained compounds were not only accurately characterized (XRD, IR, UV/Vis EA and DTA) but also investigated for their energetic character (sensitivities, initiation capability and laser ignition). The copper 4-aminotriazolyl chlorate complex showed excellent initiation of PETN, while also being thermally stable and safe to handle. Solid-state UV-Vis measurements were performed to get a possible insight toward the laser initiation mechanism. In contrast to expectations, the presented copper(II) chlorate energetic coordination compounds show manageable sensitivities that can be tamed or boosted by the appropriate choice of nitrogen-rich ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...