Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 5(6): 100920, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38616489

RESUMO

Stress Knowledge Map (SKM; https://skm.nib.si) is a publicly available resource containing two complementary knowledge graphs that describe the current knowledge of biochemical, signaling, and regulatory molecular interactions in plants: a highly curated model of plant stress signaling (PSS; 543 reactions) and a large comprehensive knowledge network (488 390 interactions). Both were constructed by domain experts through systematic curation of diverse literature and database resources. SKM provides a single entry point for investigations of plant stress response and related growth trade-offs, as well as interactive explorations of current knowledge. PSS is also formulated as a qualitative and quantitative model for systems biology and thus represents a starting point for a plant digital twin. Here, we describe the features of SKM and show, through two case studies, how it can be used for complex analyses, including systematic hypothesis generation and design of validation experiments, or to gain new insights into experimental observations in plant biology.


Assuntos
Plantas , Estresse Fisiológico , Biologia de Sistemas , Plantas/genética , Plantas/metabolismo , Fenômenos Fisiológicos Vegetais/genética , Transdução de Sinais/genética , Bases de Dados Factuais
2.
J Exp Bot ; 73(21): 7165-7181, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36169618

RESUMO

Phytohormones are major signaling components that contribute to nearly all aspects of plant life. They constitute an interconnected communication network to fine-tune growth and development in response to the ever-changing environment. To this end, they have to coordinate with other signaling components, such as reactive oxygen species and calcium signals. On the one hand, the two endosymbiotic organelles, plastids and mitochondria, control various aspects of phytohormone signaling and harbor important steps of hormone precursor biosynthesis. On the other hand, phytohormones have feedback actions on organellar functions. In addition, organelles and phytohormones often act in parallel in a coordinated matter to regulate cellular functions. Therefore, linking organelle functions with increasing knowledge of phytohormone biosynthesis, perception, and signaling will reveal new aspects of plant stress tolerance. In this review, we highlight recent work on organelle-phytohormone interactions focusing on the major stress-related hormones abscisic acid, jasmonates, salicylic acid, and ethylene.


Assuntos
Reguladores de Crescimento de Plantas , Plantas , Organelas , Ácido Abscísico , Ácido Salicílico
4.
FEBS Lett ; 591(21): 3625-3636, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28940407

RESUMO

The evolutionarily highly conserved SNF1-related protein kinase (SnRK1) protein kinase is a metabolic master regulator in plants, balancing the critical energy consumption between growth- and stress response-related metabolic pathways. While the regulation of the mammalian [AMP-activated protein kinase (AMPK)] and yeast (SNF1) orthologues of SnRK1 is well-characterised, the regulation of SnRK1 kinase activity in plants is still an open question. Here we report that the activity and T-loop phosphorylation of AKIN10, the kinase subunit of the SnRK1 complex, is regulated by the redox status. Although this regulation is dependent on a conserved cysteine residue, the underlying mechanism is different to the redox regulation of animal AMPK and has functional implications for the regulation of the kinase complex in plants under stress conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Arabidopsis/genética , Oxirredução , Fosforilação
5.
Sci Rep ; 6: 31697, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545962

RESUMO

Since years, research on SnRK1, the major cellular energy sensor in plants, has tried to define its role in energy signalling. However, these attempts were notoriously hampered by the lethality of a complete knockout of SnRK1. Therefore, we generated an inducible amiRNA::SnRK1α2 in a snrk1α1 knock out background (snrk1α1/α2) to abolish SnRK1 activity to understand major systemic functions of SnRK1 signalling under energy deprivation triggered by extended night treatment. We analysed the in vivo phosphoproteome, proteome and metabolome and found that activation of SnRK1 is essential for repression of high energy demanding cell processes such as protein synthesis. The most abundant effect was the constitutively high phosphorylation of ribosomal protein S6 (RPS6) in the snrk1α1/α2 mutant. RPS6 is a major target of TOR signalling and its phosphorylation correlates with translation. Further evidence for an antagonistic SnRK1 and TOR crosstalk comparable to the animal system was demonstrated by the in vivo interaction of SnRK1α1 and RAPTOR1B in the cytosol and by phosphorylation of RAPTOR1B by SnRK1α1 in kinase assays. Moreover, changed levels of phosphorylation states of several chloroplastic proteins in the snrk1α1/α2 mutant indicated an unexpected link to regulation of photosynthesis, the main energy source in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metabolismo Energético/fisiologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfoproteínas/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética
6.
J Exp Bot ; 67(13): 3855-72, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27117335

RESUMO

Calcium-dependent protein kinases (CDPKs) are at the forefront of decoding transient Ca(2+) signals into physiological responses. They play a pivotal role in many aspects of plant life starting from pollen tube growth, during plant development, and in stress response to senescence and cell death. At the cellular level, Ca(2+) signals have a distinct, narrow distribution, thus requiring a conjoined localization of the decoders. Accordingly, most CDPKs have a distinct subcellular distribution which enables them to 'sense' the local Ca(2+) concentration and to interact specifically with their targets. Here we present a comprehensive overview of identified CDPK targets and discuss them in the context of kinase-substrate specificity and subcellular distribution of the CDPKs. This is particularly relevant for calcium-mediated phosphorylation where different CDPKs, as well as other kinases, were frequently reported to be involved in the regulation of the same target. However, often these studies were not performed in an in situ context. Thus, considering the specific expression patterns, distinct subcellular distribution, and different Ca(2+) affinities of CDPKs will narrow down the number of potential CDPKs for one given target. A number of aspects still remain unresolved, giving rise to pending questions for future research.


Assuntos
Espaço Intracelular/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas Quinases/metabolismo , Fosforilação , Especificidade por Substrato
7.
Elife ; 42015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26263501

RESUMO

Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Adaptação Fisiológica , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Técnicas de Inativação de Genes , Teste de Complementação Genética , Fosforilação , Processamento de Proteína Pós-Traducional
8.
Nat Commun ; 5: 4687, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25134617

RESUMO

Brassinosteroids (BRs) are steroid hormones that are essential for plant growth. Responses to these hormones are mediated by transcription factors of the bri1-EMS suppressor 1/brassinazole resistant 1 subfamily, and BRs activate these factors by impairing their inhibitory phosphorylation by GSK3/shaggy-like kinases. Here we show that BRs induce nuclear compartmentalization of CESTA (CES), a basic helix-loop-helix transcription factor that regulates BR responses, and reveal that this process is regulated by CES SUMOylation. We demonstrate that CES contains an extended SUMOylation motif, and that SUMOylation of this motif is antagonized by phosphorylation to control CES subnuclear localization. Moreover, we provide evidence that phosphorylation regulates CES transcriptional activity and protein turnover by the proteasome. A coordinated modification model is proposed in which, in a BR-deficient situation, CES is phosphorylated to activate target gene transcription and enable further posttranslational modification that controls CES protein stability and nuclear dynamics.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Brassinosteroides , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Sequências Hélice-Alça-Hélice/fisiologia , Modelos Biológicos , Fosforilação/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Sumoilação/fisiologia
9.
Mol Plant ; 7(11): 1637-1652, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25064848

RESUMO

Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPK10 has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPK10 is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpk10 mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPK10 expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpk10 mutant phenotype. These results suggest that the AtMKK2-AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Folhas de Planta/anatomia & histologia , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fosforilação
10.
Mol Plant ; 6(4): 1274-1289, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23253603

RESUMO

14-3-3 proteins play an important role in the regulation of many cellular processes. The Arabidopsis vacuolar two-pore K(+) channel 1 (TPK1) interacts with the 14-3-3 protein GRF6 (GF14-λ). Upon phosphorylation of the putative binding motif in the N-terminus of TPK1, GRF6 binds to TPK1 and activates the potassium channel. In order to gain a deeper understanding of this 14-3-3-mediated signal transduction, we set out to identify the respective kinases, which regulate the phosphorylation status of the 14-3-3 binding motif in TPK1. Here, we report that the calcium-dependent protein kinases (CDPKs) can phosphorylate and thereby activate the 14-3-3 binding motif in TPK1. Focusing on the stress-activated kinase CPK3, we visualized direct and specific interaction of TPK1 with the kinase at the tonoplast in vivo. In line with its proposed role in K(+) homeostasis, TPK1 phosphorylation was found to be induced by salt stress in planta, and both cpk3 and tpk1 mutants displayed salt-sensitive phenotypes. Molecular modeling of the TPK1-CPK3 interaction domain provided mechanistic insights into TPK1 stress-regulated phosphorylation responses and pinpointed two arginine residues in the N-terminal 14-3-3 binding motif in TPK1 critical for kinase interaction. Taken together, our studies provide evidence for an essential role of the vacuolar potassium channel TPK1 in salt-stress adaptation as a target of calcium-regulated stress signaling pathways involving Ca(2+), Ca(2+)-dependent kinases, and 14-3-3 proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Canais de Potássio/metabolismo , Sais/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Vacúolos/metabolismo , Proteínas 14-3-3/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/deficiência , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Germinação , Homeostase , Modelos Moleculares , Mutação , Fosforilação , Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Conformação Proteica , Estabilidade Proteica , Transporte Proteico , Transdução de Sinais
11.
J Bacteriol ; 194(17): 4601-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22730128

RESUMO

Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.


Assuntos
Anabaena/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Processos Heterotróficos , Anabaena/enzimologia , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Frutose/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Fenótipo , Processos Fototróficos , Deleção de Sequência , Synechocystis/genética
12.
J Exp Bot ; 63(4): 1525-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22200666

RESUMO

This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Organelas/metabolismo , Plantas/metabolismo
13.
Plant Signal Behav ; 6(1): 8-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21248475

RESUMO

Plants use different signalling pathways to acclimate to changing environmental conditions. Fast changes in the concentration of free Ca(2+) ions - so called Ca(2+) signals - are among the first responses to many stress situations. These signals are decoded by different types of calcium-dependent protein kinases, which - together with mitogen-activated protein kinases (MAPK) - present two major pathways that are widely used to adapt the cellular metabolism to a changing environment. Ca(2+)-dependent protein kinase (CDPK) and MAPK pathways are known to be involved in signalling of abiotic and biotic stress in animal, yeast and plant cells. In many cases both pathways are activated in response to the same stimuli leading to the question of a potential cross-talk between those pathways. Cross-talk between Ca(2+)-dependent and MAPK signalling pathways has been elaborately studied in animal cells, but it has hardly been investigated in plants. Early studies of CDPKs involved in the biotic stress response in tobacco indicated a cross-talk of CDPK and MAPK activities, whereas a recent study in Arabidopsis revealed that CDPKs and MAPKs act differentially in innate immune signalling and showed no direct cross-talk between CDPK and MAPK activities. Similar results were also reported for CDPK and MAPK activities in the salt stress response in Arabidopsis. Different modes of action are furthermore supported by the different subcellular localization of the involved kinases. In this review, we discuss recent findings on CDPK and MAPK signalling with respect to potential cross-talk and the subcellular localization of the involved components.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Plantas/enzimologia , Proteínas Quinases/metabolismo , Animais , Estresse Fisiológico , Frações Subcelulares/enzimologia
14.
Plant J ; 63(3): 484-98, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20497378

RESUMO

Plants use different signalling pathways to respond to external stimuli. Intracellular signalling via calcium-dependent protein kinases (CDPKs) or mitogen-activated protein kinases (MAPKs) present two major pathways that are widely used to react to a changing environment. Both CDPK and MAPK pathways are known to be involved in the signalling of abiotic and biotic stresses in animal, yeast and plant cells. Here, we show the essential function of the CDPK CPK3 (At4g23650) for salt stress acclimation in Arabidopsis thaliana, and test crosstalk between CPK3 and the major salt-stress activated MAPKs MPK4 and MPK6 in the salt stress response. CPK3 kinase activity was induced by salt and other stresses after transient overexpression in Arabidopsis protoplasts, but endogenous CPK3 appeared to be constitutively active in roots and leaves in a strictly Ca(2+) -dependent manner. cpk3 mutants show a salt-sensitive phenotype comparable with mutants in MAPK pathways. In contrast to animal cells, where crosstalk between Ca(2+) and MAPK signalling is well established, CPK3 seems to act independently of those pathways. Salt-induced transcriptional induction of known salt stress-regulated and MAPK-dependent marker genes was not altered, whereas post-translational protein phosphorylation patterns from roots of wild type and cpk3 plants revealed clear differences. A significant portion of CPK3 was found to be associated with the plasma membrane and the vacuole, both depending on its N-terminal myristoylation. An initial proteomic study led to the identification of 28 potential CPK3 targets, predominantly membrane-associated proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Cloreto de Sódio , Estresse Fisiológico , Arabidopsis/fisiologia , Membrana Celular/enzimologia , Núcleo Celular/enzimologia , Protoplastos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...