Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 55(5): 1046-1063, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121978

RESUMO

Dysregulation of cellular metabolism is a hallmark of breast cancer progression and is associated with metastasis and therapeutic resistance. Here, we show that the breast tumor suppressor gene SIM2 promotes mitochondrial oxidative phosphorylation (OXPHOS) using breast cancer cell line models. Mechanistically, we found that SIM2s functions not as a transcription factor but localizes to mitochondria and directly interacts with the mitochondrial respiratory chain (MRC) to facilitate functional supercomplex (SC) formation. Loss of SIM2s expression disrupts SC formation through destabilization of MRC Complex III, leading to inhibition of electron transport, although Complex I (CI) activity is retained. A metabolomic analysis showed that knockout of SIM2s leads to a compensatory increase in ATP production through glycolysis and accelerated glutamine-driven TCA cycle production of NADH, creating a favorable environment for high cell proliferation. Our findings indicate that SIM2s is a novel stabilizing factor required for SC assembly, providing insight into the impact of the MRC on metabolic adaptation and breast cancer progression.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transporte de Elétrons , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo
2.
Cancer Res ; 81(1): 187-198, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122307

RESUMO

Approximately 70% of all breast cancers are estrogen receptor-positive (ER+ breast cancer), and endocrine therapy has improved survival for patients with ER+ breast cancer. However, up to half of these tumors recur within 20 years. Recurrent ER+ breast cancers develop resistance to endocrine therapy; thus, novel targets are needed to treat recurrent ER+ breast cancer. Here we report that semaphorin 7A (SEMA7A) confers significantly decreased patient survival rates in ER+ breast cancer. SEMA7A was hormonally regulated in ER+ breast cancer, but its expression did not uniformly decrease with antiestrogen treatments. Additionally, overexpression of SEMA7A in ER+ cell lines drove increased in vitro growth in the presence of estrogen deprivation, tamoxifen, and fulvestrant. In vivo, SEMA7A conferred primary tumor resistance to fulvestrant and induced lung metastases. Prosurvival signaling was identified as a therapeutic vulnerability of ER+SEMA7A+ tumors. We therefore propose that targeting this pathway with inhibitors of survival signaling such as venetoclax may prove efficacious for treating SEMA7A+ tumors. SIGNIFICANCE: SEMA7A predicts for and likely contributes to poor response to standard-of-care therapies, suggesting that patients with SEMA7A+ER+ tumors may benefit from alternative therapeutic strategies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/1/187/F1.large.jpg.


Assuntos
Antígenos CD/metabolismo , Antineoplásicos Hormonais/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores de Estrogênio/metabolismo , Semaforinas/metabolismo , Animais , Antígenos CD/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Estrogênios/farmacologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Prognóstico , Semaforinas/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Breast Cancer Res ; 21(1): 131, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783895

RESUMO

BACKGROUND: Breast cancer is a leading cause of cancer-related death for women in the USA. Thus, there is an increasing need to investigate novel prognostic markers and therapeutic methods. Inflammation raises challenges in treating and preventing the spread of breast cancer. Specifically, the nuclear factor kappa b (NFκB) pathway contributes to cancer progression by stimulating proliferation and preventing apoptosis. One target gene of this pathway is PTGS2, which encodes for cyclooxygenase 2 (COX-2) and is upregulated in 40% of human breast carcinomas. COX-2 is an enzyme involved in the production of prostaglandins, which mediate inflammation. Here, we investigate the effect of Singleminded-2s (SIM2s), a transcriptional tumor suppressor that is implicated in inhibition of tumor growth and metastasis, in regulating NFκB signaling and COX-2. METHODS: For in vitro experiments, reporter luciferase assays were utilized in MCF7 cells to investigate promoter activity of NFκB and SIM2. Real-time PCR, immunoblotting, immunohistochemistry, and chromatin immunoprecipitation assays were performed in SUM159 and MCF7 cells. For in vivo experiments, MCF10DCIS.COM cells stably expressing SIM2s-FLAG or shPTGS2 were injected into SCID mice and subsequent tumors harvested for immunostaining and analysis. RESULTS: Our results reveal that SIM2 attenuates the activation of NFκB as measured using NFκB-luciferase reporter assay. Furthermore, immunostaining of lysates from breast cancer cells overexpressing SIM2s showed reduction in various NFκB signaling proteins, as well as pAkt, whereas knockdown of SIM2 revealed increases in NFκB signaling proteins and pAkt. Additionally, we show that NFκB signaling can act in a reciprocal manner to decrease expression of SIM2s. Likewise, suppressing NFκB translocation in DCIS.COM cells increased SIM2s expression. We also found that NFκB/p65 represses SIM2 in a dose-dependent manner, and when NFκB is suppressed, the effect on the SIM2 is negated. Additionally, our ChIP analysis confirms that NFκB/p65 binds directly to SIM2 promoter site and that the NFκB sites in the SIM2 promoter are required for NFκB-mediated suppression of SIM2s. Finally, overexpression of SIM2s decreases PTGS2 in vitro, and COX-2 staining in vivo while decreasing PTGS2 and/or COX-2 activity results in re-expression of SIM2. CONCLUSION: Our findings identify a novel role for SIM2s in NFκB signaling and COX-2 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo-Oxigenase 2/genética , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Genes Reporter , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Modelos Biológicos , Mutação , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...