Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063853

RESUMO

The application of the digital image correlation (DIC) contactless method has extended the possibilities of reliable assessment of structure strain fields and deformations throughout the last years. However, certain weak points in the analyses using the DIC method still exist. The fluctuations of the results caused by different factors as well as certain deficiencies in the evaluation of DIC accuracy in applications for hybrid steel/composite structures with adhesive joints are one of them. In the proposed paper, the assessment of DIC accuracy based on the range of strain fluctuation is proposed. This relies on the use of a polynomial approximation imposed on the results obtained from the DIC method. Such a proposal has been used for a certain correction of the DIC solution and has been verified by the introduction of different error measures. The evaluation of DIC possibilities and accuracy are presented on the examples of the static tensile tests of adhesively bonded steel/composite joints with three different adhesives applied. The obtained results clearly show that in a non-disturbed area, very good agreement between approximated DIC and FEM results is achieved. The relative average errors in an area, determined by comparison of DIC and FEM strains, are below 15%. It is also observed that the use of approximated strains by polynomial function leads to a more accurate solution with respect to FEM results. It is concluded that DIC can be successfully applied for the analyses of hybrid steel/adhesive/composite samples, such as determination of strain fields, non-contact visual detection of faults of manufacturing and their development and influence on the whole structure behavior during the strength tests, including the elastic response of materials.

2.
Materials (Basel) ; 15(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35591567

RESUMO

The use of composite overlays to increase the fatigue life of notched steel samples is discussed in this paper. For such purposes, in the first set of studies, static and fatigue tests as well as the detailed analytical and numerical analyses for samples with double-lap joints were performed. Based on such studies, the shapes of the composite overlays were set. For a better understanding of the failure forms of the investigated adhesive joints, the experimental studies were monitored with the use of digital image correlation. In the second set of experimental studies, the static and fatigue tensile tests were performed for steel samples with a rectangular opening with rounded corners reinforced by composite overlays. The different shapes (square 45 × 45 mm and long stripes 180 × 15 mm) and composite materials (GFRP and CFRP) were used as overlays. The obtained improvement of fatigue life was in the range of 180-270% in the case of the rectangular overlays and 710% in the case of application of the overlays in the form of the long stripes. This was also confirmed by numerical analyses in which a reduction in the stress concentration factor from 2.508 (bare sample) through 2.014-2.183 (square 45 × 45 mm overlays) to 1.366 (overlays in the form of long stripes 180 × 15 mm) was observed.

3.
Materials (Basel) ; 13(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764523

RESUMO

The paper presents the assessment of the possibility and reliability of the digital image correlation (DIC) system for engineering and scientific purposes. The studies were performed with the use of samples made of the three different materials-mild S235JR + N steel, microalloyed fine-grain S355MC steel, and high strength 41Cr4 steel subjected to different heat-treatment. The DIC studies were focused on determinations of dangerous zones with large stress concentrations, plastic deformation growth, and prediction of the failure zone. Experimental tests were carried out for samples with different notches (circular, square, and triangular openings). With the use of the DIC system and microstructure analyses, the influence of different factors (laser cutting, heat treatment, material type, notch shape, and manufacturing quality) on the material behavior were studied. For all studied cases, the stress concentration factors (SCF) were estimated with the use of the analytical formulation and the finite element analysis. It was observed that the theoretical models for calculations of the influence of the typical notches may result in not proper values of SCFs. Finally, the selected results of the total strain distributions were compared with FEM results, and good agreement was observed. All these allow the authors to conclude that the application of DIC with a common digital camera can be effectively applied for the analysis of the evolution of plastic zones and the damage detection for mild high-strength steels, as well as those normalized and quenched and tempered at higher temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA