Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 20(11): 969-78, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20493701

RESUMO

BACKGROUND: Total food intake is a function of meal size and meal frequency, and adjustments to these parameters allow animals to maintain a stable energy balance in changing environmental conditions. The physiological mechanisms that regulate meal size have been studied in blowflies but have not been previously examined in Drosophila. RESULTS: Here we show that mutations in the leucokinin neuropeptide (leuc) and leucokinin receptor (lkr) genes cause phenotypes in which Drosophila adults have an increase in meal size and a compensatory reduction in meal frequency. Because mutant flies take larger but fewer meals, their caloric intake is the same as that of wild-type flies. The expression patterns of the leuc and lkr genes identify small groups of brain neurons that regulate this behavior. Leuc-containing presynaptic terminals are found close to Lkr neurons in the brain and ventral ganglia, suggesting that they deliver Leuc peptide to these neurons. Lkr neurons innervate the foregut. Flies in which Leuc or Lkr neurons are ablated have defects identical to those of leucokinin pathway mutants. CONCLUSIONS: Our data suggest that the increase in meal size in leuc and lkr mutants is due to a meal termination defect, perhaps arising from impaired communication of gut distension signals to the brain. Leucokinin and the leucokinin receptor are homologous to vertebrate tachykinin and its receptor, and injection of tachykinins reduces food consumption. Our results suggest that the roles of the tachykinin system in regulating food intake might be evolutionarily conserved between insects and vertebrates.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Expressão Gênica , Masculino , Mutação , Neurônios/citologia , Neuropeptídeos/genética , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
2.
Neuron ; 63(3): 329-41, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19679073

RESUMO

In mammals, fat store levels are communicated by leptin and insulin signaling to brain centers that regulate food intake and metabolism. By using transgenic manipulation of neural activity, we report the isolation of two distinct neuronal populations in flies that perform a similar function, the c673a-Gal4 and fruitless-Gal4 neurons. When either of these neuronal groups is silenced, fat store levels increase. This change is mediated through an increase in food intake and altered metabolism in c673a-Gal4-silenced flies, while silencing fruitless-Gal4 neurons alters only metabolism. Hyperactivation of either neuronal group causes depletion of fat stores by increasing metabolic rate and decreasing fatty acid synthesis. Altering the activities of these neurons causes changes in expression of genes known to regulate fat utilization. Our results show that the fly brain measures fat store levels and can induce changes in food intake and metabolism to maintain them within normal limits.


Assuntos
Encéfalo/patologia , Drosophila/fisiologia , Neurônios/classificação , Neurônios/metabolismo , Obesidade/patologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Metabolismo dos Carboidratos/genética , Dióxido de Carbono/metabolismo , Cromatografia em Camada Fina/métodos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Gorduras/metabolismo , Proteínas de Fluorescência Verde/genética , Masculino , Espectrometria de Massas , Mutação/genética , Obesidade/genética , Obesidade/metabolismo , Transdução de Sinais/genética
3.
Neural Dev ; 4: 31, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19686588

RESUMO

BACKGROUND: Neuronal growth cones follow specific pathways over long distances in order to reach their appropriate targets. Research over the past 15 years has yielded a large body of information concerning the molecules that regulate this process. Some of these molecules, such as the evolutionarily conserved netrin and slit proteins, are expressed in the embryonic midline, an area of extreme importance for early axon pathfinding decisions. A general model has emerged in which netrin attracts commissural axons towards the midline while slit forces them out. However, a large number of commissural axons successfully cross the midline even in the complete absence of netrin signaling, indicating the presence of a yet unidentified midline attractant. RESULTS: The evolutionarily conserved Ig proteins encoded by the turtle/Dasm1 genes are found in Drosophila, Caenorhabditis elegans, and mammals. In Drosophila the turtle gene encodes five proteins, two of which are diffusible, that are expressed in many areas, including the vicinity of the midline. Using both molecular null alleles and transgenic expression of the different isoforms, we show that the turtle encoded proteins function as non-cell autonomous axonal attractants that promote midline crossing via a netrin-independent mechanism. turtle mutants also have either stalled or missing axon projections, while overexpression of the different turtle isoforms produces invasive neurons and branching axons that do not respect the histological divisions of the nervous system. CONCLUSION: Our findings indicate that the turtle proteins function as axon guidance cues that promote midline attraction, axon branching, and axonal invasiveness. The latter two capabilities are required by migrating axons to explore densely packed targets.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/citologia , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Imunoglobulinas/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Animais , Animais Geneticamente Modificados , Axônios/efeitos dos fármacos , Linhagem Celular/citologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sistema Nervoso Central/embriologia , Drosophila , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/farmacologia , Embrião não Mamífero , Éxons/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Imunoglobulinas/deficiência , Imunoglobulinas/farmacologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/farmacologia , Mutação/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/farmacologia , Neurônios/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transfecção/métodos
4.
Glia ; 55(15): 1542-53, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17729283

RESUMO

Basigin, an IgG family glycoprotein found on the surface of human metastatic tumors, stimulates fibroblasts to secrete matrix metalloproteases (MMPs) that remodel the extracellular matrix, and is thus also known as Extracellular Matrix MetalloPRotease Inducer (EMMPRIN). Using Drosophila we previously identified novel roles for basigin. Specifically, photoreceptors of flies with basigin eyes show misplaced nuclei, rough ER and mitochondria, and swollen axon terminals, suggesting cytoskeletal disruptions. Here we demonstrate that basigin is required for normal neuron-glia interactions in the Drosophila visual system. Flies with basigin mutant photoreceptors have misplaced epithelial glial cells within the first optic neuropile, or lamina. In addition, epithelial glia insert finger-like projections--capitate projections (CPs)--sites of vesicle endocytosis and possibly neurotransmitter recycling. When basigin is missing from photoreceptors terminals, CP formation between glia and photoreceptor terminals is disrupted. Visual system function is also altered in flies with basigin mutant eyes. While photoreceptors depolarize normally to light, synaptic transmission is greatly diminished, consistent with a defect in neurotransmitter release. Basigin expression in photoreceptor neurons is required for normal structure and placement of glia cells.


Assuntos
Basigina/fisiologia , Comunicação Celular/fisiologia , Drosophila/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Imuno-Histoquímica , Metaloproteinase 2 da Matriz/fisiologia , Microscopia Eletrônica , Sistema Nervoso/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Retina/citologia , Retina/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Visão Ocular/fisiologia
5.
J Cell Sci ; 118(Pt 12): 2649-60, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15928045

RESUMO

Basigin, an IgG family glycoprotein found on the surface of human metastatic tumors, stimulates fibroblasts to secrete matrix metalloproteases that remodel the extracellular matrix. Using Drosophila melanogaster we identify intracellular, matrix metalloprotease-independent, roles for basigin. Specifically, we found that basigin, interacting with integrin, is required for normal cell architecture in some cell types. Basigin promotes cytoskeletal rearrangements and the formation of lamellipodia in cultured insect cells. Loss of basigin from photoreceptors leads to misplaced nuclei, rough ER and mitochondria, as well as to swollen axon terminals. These changes in intracellular structure suggest cytoskeletal disruptions. These defects can be rescued by either fly or mouse basigin. Basigin and integrin colocalize to cultured cells and to the visual system. Basigin-mediated changes in the architecture of cultured cells require integrin binding activity. Basigin and integrin interact genetically to affect cell structure in the animal, possibly by forming complexes at cell contacts that help organize internal cell structure.


Assuntos
Antígenos CD/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Integrinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Basigina , Forma Celular , Células Cultivadas , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Humanos , Integrinas/química , Metaloproteinase 2 da Matriz/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Ligação Proteica , Transporte Proteico , Ratos , Retina/citologia , Retina/metabolismo , Retina/ultraestrutura , Homologia de Sequência
6.
J Exp Zool A Comp Exp Biol ; 303(6): 415-21, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15880766

RESUMO

The presumed opposition of nature and nurture has been a major concern of western civilization since its beginnings. Christian theologians interpreted Adam and Eve's eating of the forbidden fruit as the origin of an inherited 'original sin'. Saint Augustine explicitly applied the concept to human mental development, arguing that, because of original sin, children are inclined toward evil and education requires physical punishment. For centuries, it was considered parents' moral and religious obligation, not to nurture their children, in our current sense of that word, but to beat the willfulness out of them. 16thC humanists fought back, arguing that "schools have become torture chambers" while it is adults "who corrupt young minds with evil". Locke's (1690) statement that children are born as a 'white paper' was crucial in rejecting the dogma of an inborn (and sinful) nature. The original sin vs. white paper argument merged with another ancient dichotomy: inborn instinct (which controls animal behavior) vs. the reason and free will which humans have. Darwin made the concept of inherited instinct, common to both man and animals, one cornerstone of his theory of evolution. The 20(th)C saw scientists recast the debate as instinct vs. learning, bitterly argued between behaviorists and ethologists. Laboratory experimentation and field observation showed that behavior could develop without learning but also that conditioning paradigms could powerfully mold behavior. The progress of genetics and neurobiology has led to the modern synthesis that neural development, and hence behavior, results from the interdependent action of both heredity and environment.


Assuntos
Aculturação , Comportamento/fisiologia , Ciências do Comportamento/história , Determinismo Genético , Instinto , Aprendizagem , Ciências do Comportamento/tendências , Biologia do Desenvolvimento/tendências , História do Século XX , Humanos , Neurobiologia/tendências
7.
J Neurosci ; 22(16): 7088-96, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12177205

RESUMO

We provide evidence that gap junction proteins, expressed during development, are necessary for the formation of normally functioning connections in the Drosophila optic lamina. Flies with mutations in the gap junction genes (innexins), shakingB, and ogre have normal photoreceptor potentials but a defective response of the postsynaptic cells in the optic lamina. This is indicated by a reduction in, or absence of, transients in the electroretinogram. Ogre is required in the presynaptic retinal photoreceptors. ShakingB(N) is, at a minimum, required in postsynaptic lamina neurons. Transgenic expression of the appropriate innexins during pupal development (but not later) rescues connection defects. Transient gap junctions have been observed to precede chemical synapse formation and have been hypothesized to play a role in connectivity and synaptogenesis; however, no causal role has been demonstrated. Here we show that developmental gap junction genes can be required for normally functioning neural connections to form.


Assuntos
Conexinas/biossíntese , Proteínas de Drosophila/biossíntese , Olho/metabolismo , Proteínas de Membrana , Neurônios/fisiologia , Animais , Conexinas/genética , Cruzamentos Genéticos , Drosophila , Proteínas de Drosophila/genética , Eletrorretinografia , Olho/crescimento & desenvolvimento , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Mosaicismo , Mutação , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fenótipo , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/fisiologia , Regiões Promotoras Genéticas
8.
J Cell Sci ; 115(Pt 17): 3379-88, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12154069

RESUMO

Gap junctions (GJs) are composed of proteins from two distinct families. In vertebrates, GJs are composed of connexins; a connexin hexamer on one cell lines up with a hexamer on an apposing cell to form the intercellular channel. In invertebrates, GJs are composed of an unrelated protein family, the innexins. Different connexins have distinct properties that make them largely non-interchangeable in the animal. Innexins are also a large family with high sequence homology, and some functional differences have been reported. The biological implication of innexin differences, such as their ability to substitute for one another in the animal, has not been explored. Recently, we showed that GJ proteins are necessary for the development of normal neural transmission in the Drosophila visual system. Mutations in either of two Drosophila GJ genes (innexins), shakB and ogre, lead to a loss of transients in the electroretinogram (ERG), which is indicative of a failure of the lamina to respond to retinal cell depolarization. Ogre is required presynaptically and shakB(N) postsynaptically. Both act during development. Here we ask if innexins are interchangeable in their role of promoting normal neural development in flies. Specifically, we tested several innexins for their ability to rescue shakB(2) and ogre mutant ERGs and found that, by and large, innexins are not interchangeable. We mapped the protein regions required for this specificity by making molecular chimeras between shakB(N) and ogre and testing their ability to rescue both mutants. Each chimera rescued either shakB or ogre but never both. Sequences in the first half of each protein are necessary for functional specificity. Potentially crucial residues include a small number in the intracellular loop as well as a short stretch just N-terminal to the second transmembrane domain. Temporary GJs, possibly between the retina and lamina, may play a role in final target selection and/or chemical synapse formation in the Drosophila visual system. In that case, specificity in GJ formation or function could contribute, directly or indirectly, to chemical synaptic specificity by regulating which neurons couple and what signals they exchange. Cells may couple only if their innexins can mate with each other. The partially overlapping expression patterns of several innexins make this 'mix and match' model of GJ formation a possibility.


Assuntos
Conexinas/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Junções Comunicantes/metabolismo , Proteínas de Membrana , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Conexinas/química , Conexinas/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Eletrorretinografia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Luz , Masculino , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
9.
Biol Bull ; 176(2S): 79-85, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29300570

RESUMO

In insect egg chambers the nurse cells produce cytoplasm which is transported into the oocyte. It has been proposed that the transport is driven by an electrophoretic current resulting from a voltage gradient produced by the egg chamber. There are contradictory reports concerning the existence of significant voltage gradients. Any internal current must have a return pathway. An extracellular current surrounding the egg chamber that is in the opposite direction to that required for the return of an electrophoretic current has been reported, but other authors have not found such a consistent current. We used the vibrating probe to measure the extracellular currents surrounding 50 egg chambers during the stage of maximum transport. Our set of measurements was predominantly characterized by small and variable currents. Most of the measurements were on the order of 1 microampere/cm2, and no particular pattern of current flow was consistently evident. Although it was possible to pick out some egg chambers that appeared to show patterns of current flow, approximately equal numbers of egg chambers showed patterns of opposite types, and most showed no pattern at all. Our data do not support the presence of a consistent pattern of ionic current.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...