Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37367747

RESUMO

Motivated by the need for efficient purification methods for the recovery of valuable resources, we developed a wire-electrospun membrane adsorber without the need for post-modification. The relationship between the fiber structure, functional-group density, and performance of electrospun sulfonated poly(ether ether ketone) (sPEEK) membrane adsorbers was explored. The sulfonate groups enable selective binding of lysozyme at neutral pH through electrostatic interactions. Our results show a dynamic lysozyme adsorption capacity of 59.3 mg/g at 10% breakthrough, which is independent of the flow velocity confirming dominant convective mass transport. Membrane adsorbers with three different fiber diameters (measured by SEM) were fabricated by altering the concentration of the polymer solution. The specific surface area as measured with BET and the dynamic adsorption capacity were minimally affected by variations in fiber diameter, offering membrane adsorbers with consistent performance. To study the effect of functional-group density, membrane adsorbers from sPEEK with different sulfonation degrees (52%, 62%, and 72%) were fabricated. Despite the increased functional-group density, the dynamic adsorption capacity did not increase accordingly. However, in all presented cases, at least a monolayer coverage was obtained, demonstrating ample functional groups available within the area occupied by a lysozyme molecule. Our study showcases a ready-to-use membrane adsorber for the recovery of positively charged molecules, using lysozyme as a model protein, with potential applications in removing heavy metals, dyes, and pharmaceutical components from process streams. Furthermore, this study highlights factors, such as fiber diameter and functional-group density, for optimizing the membrane adsorber's performance.

2.
J Phys Chem A ; 124(51): 10649-10666, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320690

RESUMO

This paper presents a comprehensive potential energy surface (PES) for hydrogen atom addition to and abstraction from 2-methyl-1-butene, 2-methyl-2-butene, and 3-methyl-1-butene and the subsequent ß-scission and H atom transfer reactions. Thermochemical parameters for species on the C5H11 potential energy surface (PES) were calculated as a function of temperature (298-2000 K), using a series of isodesmic reactions to determine the formation enthalpies. High-pressure limiting and pressure-dependent rate constants were calculated using Rice-Ramsperger-Kassel-Marcus theory with a one-dimensional master equation. A number of studies have highlighted the fact that C5 intermediate species play a role in polyaromatic hydrocarbon formation and that a fuel's chemical structure can be key in understanding the intermediate species formed during fuel decomposition. Rate constant recommendations for both H atom addition to, and H-atom abstraction by H atoms from, linear and branched alkenes have subsequently been proposed by incorporating our earlier work on 1- and 2-pentene, and these can be used in mechanisms of larger alkenes for which calculations do not exist. The current set of rate constants for the reactions of H atoms with both linear and branched C5 alkenes, including their chemically activated pathways, are the first available in the literature of any reasonable fidelity for combustion modeling and are important for gasoline mechanisms. Validation of our theoretical results with pyrolysis experiments of 2-methyl-1-butene, 2-methyl-2-butene, and 3-methyl-1-butene at 2 bar in a single pulse shock tube (SPST) were carried out, with satisfactory agreement observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...