Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(3): 864-876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443579

RESUMO

The industrial yeast Komagataella phaffii (formerly named Pichia pastoris) is commonly used to synthesize recombinant proteins, many of which are used as human therapeutics or in food. However, the basic strain, named NRRL Y-11430, from which all commercial hosts are derived, is not available without restrictions on its use. Comparative genome sequencing leaves little doubt that NRRL Y-11430 is derived from a K. phaffii type strain deposited in the UC Davis Phaff Yeast Strain Collection in 1954. We analysed four equivalent type strains in several culture collections and identified the NCYC 2543 strain, from which we started to develop an open-access Pichia chassis strain that anyone can use to produce recombinant proteins to industry standards. NRRL Y-11430 is readily transformable, which we found to be due to a HOC1 open-reading-frame truncation that alters cell-wall mannan. We introduced the HOC1 open-reading-frame truncation into NCYC 2543, which increased the transformability and improved secretion of some but not all of our tested proteins. We provide our genome-sequenced type strain, the hoc1tr derivative that we named OPENPichia as well as a synthetic, modular expression vector toolkit under liberal end-user distribution licences as an unencumbered OPENPichia resource for the microbial biotechnology community.


Assuntos
Parede Celular , Microbiota , Saccharomycetales , Humanos , Alimentos , Proteínas Recombinantes/genética
2.
Org Biomol Chem ; 20(2): 464-471, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34913461

RESUMO

Recently, the GlyConnect-oxime (GC) protein conjugation strategy was developed to provide a site-selective glycan-based conjugation strategy as an extension to the in-house developed GlycoDelete (GD) technology. GD gives access to glycoproteins with single GlcNAc, LacNAc, or LacNAc-Sia type glycans on their N-glycosylation sites. We have previously shown that these glycans provide a unique handle for site-selective conjugation as they provide a short, homogeneous and hydrophilic link to the protein backbone. GC focused on the use of chemical and chemo-enzymatic pathways for conjugation of a single molecule of interest via oxime formation or reductive amination. In the current work, we explore multicomponent reactions (MCR), namely Ugi and Passerini reactions, for GlycoDelete glycan directed, site-specific protein conjugation (MC-GC). The use of the Ugi and Passerini multicomponent reactions holds the potential of introducing multiple groups of interest in a single reaction step while creating a hydrophilic peptide-like linker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...