Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 15(12): 2648-2656, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30860218

RESUMO

In this work, we investigate the influence of channel structure and fluid rheology on non-inertial migration of non-Brownian polystyrene beads. Particle migration in this regime can be found in biomedical, chemical, environmental and geological applications. However, the effect of fluid rheology on particle migration in porous media remains to be clearly understood. Here, we isolate the effects of elasticity and shear thinning by comparing a Newtonian fluid, a purely elastic (Boger) fluid, and a shear-thinning elastic fluid. To mimic the complexity of geometries in real-world application, a random porous structure is created through a disordered arrangement of cylindrical pillars in the microchannel. Experiments are repeated in an empty channel and in channels with an ordered arrangement of pillars, and the similarities and differences in the observed particle focusing are analyzed. It is found that elasticity drives the particles away from the channel walls in an empty microchannel. Notably, particle focusing is unaffected by curved streamlines in an ordered porous microchannel and particles stay away from pillars in elastic fluids. Shear-thinning is found to reduce the effect of focusing and a broader region of particle concentration is observed. It is also noteworthy that the rheological characteristics of the fluid are not important for the particle distribution in a randomly arranged pillared microchannel and particles have a uniform distribution for all suspending fluids. Moreover, discussion on the current discrepancy in the literature about the equilibrium positions of the particles in a channel is extended by analyzing the results obtained in the current experiments.

2.
J Phys Condens Matter ; 23(50): 505101, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22040676

RESUMO

We use 3D confocal microscopy combined with image analysis and particle tracking techniques to study the structure and dynamics of aqueous suspensions of fluorescently labelled p(NIPAm-co-AAc) microgel particles. By adjusting the pH we can tune the interactions between the microgel particles from purely repulsive near neutral pH, to weakly attractive at low pH. This change in the interaction potential has a pronounced effect on the manner in which the suspensions solidify. We directly follow the evolution of the system after a quench from the liquid state to obtain detailed information on the route to kinetic arrest. At low pH and low concentration, dynamic arrest results mainly from crystallization driven by the attraction between particles; crystal nucleation occurs homogeneously throughout the sample and does not appear to be localized to geometric boundaries. Moreover, the growth of crystals is characterized by nucleation-limited kinetics where a rapid growth of crystal domains takes place after a long concentration-dependent lag time. At low pH and high concentration, relaxation of the suspension is constrained and it evolves only slightly, resulting in a disordered solid. At neutral pH, the dynamics are a function of the particle number concentration only; a high concentration leads to the formation of a disordered soft glassy solid.

3.
Phys Rev Lett ; 95(23): 238302, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16384352

RESUMO

Colloid-polymer mixtures can undergo spinodal decomposition into colloid-rich and colloid-poor regions. Gelation results when interconnected colloid-rich regions solidify. We show that this occurs when these regions undergo a glass transition, leading to dynamic arrest of the spinodal decomposition. The characteristic length scale of the gel decreases with increasing quench depth, and the nonergodicity parameter exhibits a pronounced dependence on scattering vector. Mode coupling theory gives a good description of the dynamics, provided we use the full static structure as input.


Assuntos
Coloides/química , Cristalização/métodos , Géis/química , Vidro/química , Modelos Químicos , Simulação por Computador , Conformação Molecular , Transição de Fase , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...