Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5236, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897990

RESUMO

Raman spectroscopy enables the non-destructive characterization of chemical composition, crystallinity, defects, or strain in countless materials. However, the Raman response of surfaces or thin films is often weak and obscured by dominant bulk signals. Here we overcome this limitation by placing a transferable porous gold membrane, (PAuM) on the surface of interest. Slot-shaped nanopores in the membrane act as plasmonic antennas and enhance the Raman response of the surface or thin film underneath. Simultaneously, the PAuM suppresses the penetration of the excitation laser into the bulk, efficiently blocking its Raman signal. Using graphene as a model surface, we show that this method increases the surface-to-bulk Raman signal ratio by three orders of magnitude. We find that 90% of the Raman enhancement occurs within the top 2.5 nm of the material, demonstrating truly surface-sensitive Raman scattering. To validate our approach, we quantify the strain in a 12.5 nm thin Silicon film and analyze the surface of a LaNiO3 thin film. We observe a Raman mode splitting for the LaNiO3 surface-layer, which is spectroscopic evidence that the surface structure differs from the bulk. These results validate that PAuM gives direct access to Raman signatures of thin films and surfaces.

2.
ACS Appl Mater Interfaces ; 14(14): 16558-16567, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353489

RESUMO

Surface-enhanced Raman spectroscopy (SERS) demands reliable, high-enhancement substrates in order to be used in different fields of application. Here we introduce freestanding porous gold membranes (PAuM) as easy-to-produce, scalable, mechanically stable, and effective SERS substrates. We fabricate large-scale sub-30 nm thick PAuM that form freestanding membranes with varying morphologies depending on the nominal gold thickness. These PAuM are mechanically stable for pressures up to more than 3 bar and exhibit surface-enhanced Raman scattering with local enhancement factors from 104 to 105, which we demonstrate by wavelength-dependent and spatially resolved Raman measurements using graphene as a local Raman probe. Numerical simulations reveal that the enhancement arises from individual, nanoscale pores in the membrane acting as optical slot antennas. Our PAuM are mechanically stable, provide robust SERS enhancement for excitation power densities up to 106 W cm-2, and may find use as a building block in SERS-based sensing applications.

3.
Nano Lett ; 19(9): 6400-6409, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429571

RESUMO

Atomically thin porous graphene is emerging as one of the most promising candidates for next-generation membrane material owing to the ultrahigh permeation. However, the transport selectivity relies on the precise control over pore size and shape which considerably compromises the scalability. Here, we study electrolyte permeation through a sheet of large-area, porous graphene, with relatively large pore sizes of 20 ± 10 nm. Counterintuitively, a high degree of salt rejection is observed by electrostatic gating, reducing the diffusive flux by up to 1 order of magnitude. We systematically investigate the effects of salt concentration and species, including developing a theory to model the electrolyte diffusion through a nanopore drilled in a sheet of gated graphene. The interplay between graphene quantum capacitance and the electrical double layer is found to selectively modulate the anionic and cationic transport paths, creating voltage-dependent electrochemical barriers when the pore size is comparable to the Debye length. Our findings reveal a new degree of freedom regulating electrolyte permeation through porous two-dimensional materials, complementary to the pore size design and engineering.

4.
ACS Nano ; 13(1): 134-142, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30566335

RESUMO

Driven by the need of maximizing performance, membrane nanofabrication strives for ever thinner materials aiming to increase permeation while evoking inherent challenges stemming from mechanical stability and defects. We investigate this thickness rationale by studying viscous transport mechanisms across nanopores when transitioning the membrane thickness from infinitely thin to finite values. We synthesize double-layer graphene membranes containing pores with diameters from ∼6 to 1000 nm to investigate liquid permeation over a wide range of viscosities and pressures. Nanoporous membranes with thicknesses up to 90 nm realized by atomic layer deposition demonstrate dominance of the entrance resistance for aspect ratios up to one. Liquid permeation across these atomically thin pores is limited by viscous dissipation at the pore entrance. Independent of thickness and universal for porous materials, this entrance resistance sets an upper bound to the viscous transport. Our results imply that membranes with near-ultimate permeation should feature rationally selected thicknesses based on the target solute size for applications ranging from osmosis to microfiltration and introduce a proper perspective to the pursuit of ever thinner membranes.

5.
Sci Adv ; 4(11): eaau0476, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30480092

RESUMO

Reliable and large-scale manufacturing routes for perforated graphene membranes in separation and filtration remain challenging. We introduce two manufacturing pathways for the fabrication of highly porous, perforated graphene membranes with sub-100-nm pores, suitable for ultrafiltration and as a two-dimensional (2D) scaffold for synthesizing ultrathin, gas-selective polymers. The two complementary processes-bottom up and top down-enable perforated graphene membranes with desired layer number and allow ultrafiltration applications with liquid permeances up to 5.55 × 10-8 m3 s-1 Pa-1 m-2. Moreover, thin-film polymers fabricated via vapor-liquid interfacial polymerization on these perforated graphene membranes constitute gas-selective polyimide graphene membranes as thin as 20 nm with superior permeances. The methods of controlled, simple, and reliable graphene perforation on wafer scale along with vapor-liquid polymerization allow the expansion of current 2D membrane technology to high-performance ultrafiltration and 2D material reinforced, gas-selective thin-film polymers.

6.
ACS Appl Mater Interfaces ; 10(23): 19305-19310, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29808667

RESUMO

In chemical separation, thin membranes exhibit high selectivity, but often require a support at the expense of permeance. Here, we report a pinhole-free polymeric layer synthesized within freestanding carbon nanotube buckypaper through vapor-liquid interfacial polymerization (VLIP). The VLIP process results in thin, smooth and uniform polyamide and imide films. The scaffold reinforces the nanofilm, defines the membrane thickness, and introduces an additional transport mechanism. Our membranes exhibit superior gas selectivity and osmotic semipermeability. Plasticization resistance and high permeance in hydrocarbon separation together with a considerable improvement in water-salt permselectivity highlight their potential as new membrane architecture for chemical separation.

7.
Nanoscale ; 8(15): 8345-54, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27043304

RESUMO

We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He(+) and Ga(+) irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He(+) at high energies (10-30 keV) allowing the passage of >97% He(+) particles without creating destructive lattice vacancy. Large Ga(+) ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ∼50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He(+) ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration.

8.
Nanotechnology ; 26(36): 365701, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26291069

RESUMO

Nanoparticle network devices find growing application in sensing and electronics. One recurring challenge in the design and fabrication of this class of devices is ensuring a stable interface via robust yet unobstructive electrodes. A figure of merit which dictates the minimum electrode overlap required for optimal charge injection into the network is the contact transfer length. However, we find that traditional contact characterization using the transmission line model, an indirect method which requires extrapolation, is insufficient for network devices. Instead, we apply Kelvin probe force microscopy to characterize the contact resistance by imaging the surface potential with nanometer resolution. We then use scanning probe lithography to directly investigate the contact transfer length. We have determined the transfer length in graphene contacted devices to be 200-400 nm, thus apt for further device reduction which is often necessary for on-site sensing applications. Simulations from a two-dimensional resistor model support our observations and are expected to be an important tool for further optimizing the design of nanoparticle-based devices.

9.
ACS Appl Mater Interfaces ; 6(23): 21019-25, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25408997

RESUMO

We report a simple method for growing high-quality single-walled carbon nanotube (SWCNT) arrays on 100 mm wafers via the addition of water vapor to highly purified gases during the CNT growth step. We show that adding a small amount of water during growth helps to create a uniform catalyst distribution and yields high-quality (Raman G/D of 26 ± 3), high-density (up to 6 × 10(11) cm(-2)) and uniform SWCNT arrays on 100 mm large wafers. We rationalize our finding by suggesting that the addition of water decreases catalyst mobility, preventing its coarsening at higher temperatures. We also report a new mechanism of catalyst inactivation in wafer-scale growth using ultrapurified gas sources by the formation of large, 5 ± 3 µm iron particles. We found such formations to be common for substrates with large temperature gradients, such as for wafers processed in a typical cold-wall chemical vapor deposition reactor.

10.
Science ; 344(6181): 289-92, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24744372

RESUMO

A two-dimensional (2D) porous layer can make an ideal membrane for separation of chemical mixtures because its infinitesimal thickness promises ultimate permeation. Graphene--with great mechanical strength, chemical stability, and inherent impermeability--offers a unique 2D system with which to realize this membrane and study the mass transport, if perforated precisely. We report highly efficient mass transfer across physically perforated double-layer graphene, having up to a few million pores with narrowly distributed diameters between less than 10 nanometers and 1 micrometer. The measured transport rates are in agreement with predictions of 2D transport theories. Attributed to its atomic thicknesses, these porous graphene membranes show permeances of gas, liquid, and water vapor far in excess of those shown by finite-thickness membranes, highlighting the ultimate permeation these 2D membranes can provide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...