Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 160: 107785, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541651

RESUMO

Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-ß (Aß) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aß induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aß injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aß accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aß stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Benzamidas/farmacologia , Fármacos Neuroprotetores/farmacologia , Pirazóis/farmacologia , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Regulação Alostérica , Peptídeos beta-Amiloides/efeitos adversos , Animais , Benzamidas/administração & dosagem , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fragmentos de Peptídeos/efeitos adversos , Pirazóis/administração & dosagem , Receptor de Glutamato Metabotrópico 5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA