Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 49(44): 15903-15913, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33165461

RESUMO

Poly- and single-crystalline samples of In0.67□0.33In2S4 thiospinel were obtained by various powder metallurgical and chemical vapor transport methods, respectively. All synthesized samples contained ß-In0.67□0.33In2S4 modification only, independent of the synthesis procedure. High-resolution powder X-ray diffraction (PXRD) experiments at 80 K enabled the observation of split tetragonal reflections (completely overlapped at room temperature), which prove the correctness of the crystal structure model accepted for the ß-polymorph. Combining single-crystal XRD, transmission electron microscopy and selected-area electron diffraction studies, the presence of three twin domains in the as-grown crystals was confirmed. A high temperature PXRD study revealed both abrupt (in full widths at half maxima of main reflections and in unit-cell volume) and gradual (in intensity of satellites and c/a ratio) changes in the vicinity of the α-ß phase transition. These observations, together with a clear endothermic peak in the heat capacity, the magnitude of enthalpy/entropy change and the temperature dependence of electrical resistivity (associated with hysteresis), hinted towards the 1st order type of transition. Three scenarios, based on Rietveld refinement analysis, were considered for the description of the crystal structure evolution from ß- to α-modification, including the (3+3)D-modulated cubic structure at 693 K as an intermediate state during the ß-α transformation. The Seebeck coefficient, electrical resistivity and thermal conductivity were not only influenced by phase transition, but also by annealing conditions (S-poor or S-rich atmosphere). Density functional theory calculations predicted semiconducting behavior of In0.67□0.33In2S4, as well as instability of the fictitious InIn2S4 thiospinel.

2.
Chemistry ; 26(23): 5245-5256, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31943404

RESUMO

The homogeneity range of ternary iron indium thiospinel at 873 K was investigated. A detailed study was focused on two distinct series (y=z): 1) a previously reported charge-balanced (In0.67+0.33y □0.33-0.33y )tetr [In2-z Fez ]oct S4 (A1-series; □ stands for vacancy; the abbreviations "tetr" and "oct" indicate atoms occupying tetrahedral 8a and octahedral 16d sites, respectively) and 2) a new charge-unbalanced (In0.67+y □0.33-y )tetr [In2-z Fez ]oct S4 (A2-series). Fe atoms were confirmed to exclusively occupy an octahedral position in both series. An unusual reduction of the unit cell parameter with increasing Fe content is explained by differences in the ionic radii between Fe and In, as well as by an additional electrostatic attraction originating from charge imbalance (latter only in A2-series). The studied compound is an n-type semiconductor, and its charge carrier concentration increases or decreases for larger Fe content within the A1- and A2-series, respectively. The thermal conductivity κtot is significantly reduced upon increasing vacancy concentration, whereas the change of power factor is insufficient to drastically improve the thermoelectric figure of merit.

3.
Dalton Trans ; 48(23): 8350-8360, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112177

RESUMO

A detailed study of polycrystalline indium-based In1-x□xIn2S4 (x = 0.16, 0.22, 0.28, and 0.33) thiospinel is presented (□- vacancy). Comprehensive investigation of synthesis conditions, phase composition and thermoelectric properties was performed by means of various diffraction, microscopic and spectroscopic methods. Single-phase α- and ß-In1-x□xIn2S4 were found in samples with 0.16 ≤x≤ 0.22 and x = 0.33 (In2S3), respectively. In contrast, it is shown that In0.72□0.28In2S4 contains both α- and ß-polymorphic modifications. Consequently, the thermoelectric characterization of well-defined α- and ß-In1-x□xIn2S4 is conducted for the first time. α-In1-x□xIn2S4 (x = 0.16 and 0.22) revealed n-type semiconducting behavior, a large Seebeck coefficient (>|200|µV K-1) and moderate charge carrier mobility on the level of ∼20 cm2 V-1 s-1 at room temperature (RT). Decreases in charge carrier concentration (increase of electrical resistivity) and thermal conductivity (even below 0.6 W m-1 K-1 at 760 K) for larger In-content are observed. Although ß-In0.67□0.33In2S4 (ß-In2S3) is a distinct polymorphic modification, it followed the abovementioned trend in thermal conductivity and displayed significantly higher charge carrier mobility (∼104 cm2 V-1 s-1 at RT). These findings indicate that structural disorder in the α-modification affects both electronic and thermal properties in this thiospinel. The reduction of thermal conductivity counterbalances a lowered power factor and, thus, the thermoelectric figure of merit ZTmax = 0.2 at 760 K is nearly the same for both α- and ß-In1-x□xIn2S4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...