Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
1.
Int J Nanomedicine ; 19: 8779-8796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220192

RESUMO

Purpose: Atopic dermatitis (AD) is a chronic inflammatory skin condition that can affect individuals of all ages. Recent research has shown that oxidative stress plays a crucial role in the development of AD. Therefore, inhibiting oxidative stress may be an effective therapeutic approach for AD. Nano-molybdenum is a promising material for use as an antioxidant. We aimed to evaluate the therapeutic effects and preliminary mechanisms of molybdenum nanoparticles (Mo NPs) by using a murine model of chemically induced AD-like disease. Methods: HaCaT cells, a spontaneously immortalized human keratinocyte cell line, were stimulated by tumor necrosis factor-alpha /interferon-gamma after pre-treatment with Mo NPs. Reactive oxygen species levels, production of inflammatory factors, and activation of the nuclear factor kappa-B and the nuclear factor erythroid 2-related factor pathways were then evaluated. Mo NPs was topically applied to treat a murine model of AD-like disease induced by MC903, a vitamin D3 analog. Dermatitis scores, pruritus scores, transepidermal water loss and body weight were evaluated. AD-related inflammatory factors and chemokines were evaluated. Activation of the nuclear factor kappa-B and nuclear factor erythroid 2-related factor / heme oxygenase-1 pathways was assessed. Results: Our data showed that the topical application of Mo NPs dispersion could significantly alleviate AD skin lesions and itching and promote skin barrier repair. Further mechanistic experiments revealed that Mo NPs could inhibit the excessive activation of the nuclear factor kappa-B pathway, promote the expression of nuclear factor erythroid 2-related factor and heme oxygenase-1 proteins, and suppress oxidative stress reactions. Additionally, they inhibited the expression of thymic stromal lymphopoietin, inflammatory factors, and chemokines, thereby alleviating skin inflammation. Conclusion: Mo NPs present a promising alternative treatment option for patients with AD as they could address three pivotal mechanisms in the pathogenesis of AD concurrently.


Assuntos
Dermatite Atópica , Heme Oxigenase-1 , Nanopartículas Metálicas , Molibdênio , Fator 2 Relacionado a NF-E2 , NF-kappa B , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Heme Oxigenase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Molibdênio/farmacologia , Molibdênio/química , Humanos , Camundongos , Nanopartículas Metálicas/química , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Células HaCaT , Antioxidantes/farmacologia , Camundongos Endogâmicos BALB C , Nanopartículas/química , Linhagem Celular , Pele/efeitos dos fármacos , Pele/metabolismo , Proteínas de Membrana
2.
Bioresour Technol ; 413: 131465, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39260732

RESUMO

Bacterial mercury (Hg) methylation is critical for bioremediating Hg pollution, but the impact of emerging antibiotics on this process has rarely been reported. This study innovatively investigated the interactions between Hg-methylating bacteria of Geobacter metallireducens GS-15 and two quinolone antibiotics: lomefloxacin (LOM) and ciprofloxacin (CIP) at 5 µg/L. Short-term LOM exposure increased methylmercury (MeHg) yield by 36 % compared to antibiotic-free conditions, caused by hormesis to alter bioactivities of single GS-15 cells. Long-term CIP exposure led to more antibiotic resistance and mercury tolerance in GS-15 cells, doubling MeHg productivity and significantly increasing expression of Hg methylation (hgcA by 95 folds) and antibiotic resistance (gyrA by 54 folds) genes, while mercury resistance gene merA only increased by 2.5 folds than without selective pressure. These results suggest quinolone antibiotics at environmentally contaminated concentrations stimulate bacterial Hg methylation to form highly toxic MeHg, raising considerable concern for the Hg-antibiotic complex in contaminated environments.

3.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273268

RESUMO

Acinetobacter lwoffii is widely considered to be a harmful bacterium that is resistant to medicines and disinfectants. A. lwoffii NL1 degrades phenols efficiently and shows promise as an aromatic compound degrader in antibiotic-contaminated environments. To gain a comprehensive understanding of A. lwoffii, the first genome-scale metabolic model of A. lwoffii was constructed using semi-automated and manual methods. The iNX811 model, which includes 811 genes, 1071 metabolites, and 1155 reactions, was validated using 39 unique carbon and nitrogen sources. Genes and metabolites critical for cell growth were analyzed, and 12 essential metabolites (mainly in the biosynthesis and metabolism of glycan, lysine, and cofactors) were identified as antibacterial drug targets. Moreover, to explore the metabolic response to phenols, metabolic flux was simulated by integrating transcriptomics, and the significantly changed metabolism mainly included central carbon metabolism, along with some transport reactions. In addition, the addition of substances that effectively improved phenol degradation was predicted and validated using the model. Overall, the reconstruction and analysis of model iNX811 helped to study the antimicrobial systems and biodegradation behavior of A. lwoffii.


Assuntos
Acinetobacter , Genoma Bacteriano , Acinetobacter/metabolismo , Acinetobacter/genética , Modelos Biológicos , Carbono/metabolismo , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Fenóis/metabolismo , Biodegradação Ambiental , Antibacterianos/farmacologia
4.
World Neurosurg ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343380

RESUMO

OBJECTIVE: This study aimed to integrate intraoperative ultrasound (IUS) and magnetic resonance imaging (IMRI) with neuronavigation (NN) to create a multimodal surgical protocol for diffuse gliomas. Clinical outcomes were compared to the standard NN-guided protocol. METHODS: Adult patients with diffuse gliomas scheduled for gross total resection (GTR) were consecutively enrolled to undergo either NN-guided surgery (80 patients, July 2019-January 2022) or multimodal-integrated surgery (80 patients, February 2022-August 2023). The primary outcomes were the extent of resection (EOR) and GTR. Additional outcomes included operative time, blood loss, length of hospital stay, and patient survival. RESULTS: GTR was achieved in 69% of patients who underwent multimodal-integrated surgery, compared to 43% of those who received NN-guided surgery (P=0.002). Residual tumor was detected by IMRI in 53 patients (66%), and further GTR was achieved in 28 of these cases. The median EOR was 100% for the multimodal group and 95% for the NN-guided group (P=0.001), while the median operative time was 8 hours versus 5 hours (P<0.001). Neurological deficits, blood loss, and hospital stay durations were comparable between two groups. Multimodal-integrated surgery resulted in greater EOR and higher GTR rates in contrast-enhancing gliomas, gliomas in eloquent regions, and large gliomas (≥50mm). GTR in glioblastomas and other contrast-enhancing gliomas contributed to improved overall survival. CONCLUSIONS: Compared to standard NN-guided surgery, multimodal-integrated surgery using NN, IMRI, and IUS significantly increased the EOR and GTR rates for diffuse gliomas.

5.
Cell Mol Immunol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300319

RESUMO

Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4+ T cells, particularly conventional CD4+ T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4+ T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8+ T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.

6.
Cancer Lett ; 604: 217231, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276912

RESUMO

MATR3 is a nuclear matrix protein implicated in various cancers; however, its specific role in tumor progression remains unclear. The study utilized the TCGA database to reveal that MATR3 expression is upregulated in liver cancer and is correlated with poor prognosis. Functionally, MATR3 promoted liver cancer cell proliferation and metastasis. Comprehensive RNA sequencing analysis showed that MATR3 significantly affected the type I IFN signaling pathway and DHX58 is a downstream target of MATR3. Further experiments showed that MATR3 bound to DHX58 mRNA through its RRM structural domain and recruited YTHDF2, an m6A reader, leading to degradation of DHX58 mRNA and suppression of the type I IFN signaling pathway. The knockout of MATR3 in liver cancer cells triggered a natural immune response that stimulated CD8+ T cells to eliminate liver cancer cells. This study demonstrated that MATR3 downregulates type I IFN signaling in liver cancer cells through m6A modification and inhibits immune cell infiltration within tumors. These findings expand our understanding of the role of MATR3 in liver cancer.

7.
Chemosphere ; 365: 143374, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306112

RESUMO

The widespread occurrence of perfluorooctane sulfonate (PFOS) and the mass production and application of graphene oxide (GO) lead to their inevitable release and interaction in the environment, which may enhance associated toxic impacts on aquatic organisms. This study elucidates the induction of apoptosis by 60-day chronic single and mixture exposures to environmentally relevant levels of PFOS (0.5 µg/L and 5 µg/L) and GO (1 mg/L) in adult marine medaka Oryzias melastigma. Results showed a significant increase (p < 0.05) in reactive oxygen species (ROS) levels, the apoptotic positive rate in livers, and activities of caspases 3, 8, and 9 in all treated groups compared to the control. PFOS individual and PFOS-GO combined exposures significantly impacted fish growth, upregulated expressions of six apoptosis-related genes including p53, apaf1, il1b, tnfa, bcl2l1, bax, as well as enriched cell cycle and p53 signaling pathways (transcriptomic analysis) related to apoptosis compared to control group. Besides higher ROS production, GO also had a higher binding affinity to proteins than PFOS, especially to caspase 8 as revealed by molecular docking. Overall, PFOS induced ROS-p53-caspase apoptosis pathway through multi-gene regulation during single or mixture exposure, while GO single exposure induced apoptosis through tissue damage and ROS-caspase pathway activation and direct docking with caspase 8 to activate the caspase cascade. Under co-exposure, the PFOS-induced apoptotic pathway overshadowed the GO-induced pathway, due to competition for limited active sites on caspases. These findings will contribute to a better understanding of the apoptosis mechanism and ecological risks of nanomaterials and per- and polyfluoroalkyl substances in marine ecosystems.

8.
Ecotoxicol Environ Saf ; 284: 116974, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39232298

RESUMO

Biochar has been recognised as an efficacious amendment for the remediation of compound heavy metal contamination in soil. However, the molecular mechanism of biochar-mediated tolerance to compound heavy metal toxicity in cotton is unknown. The objective of this research was to investigate the positive impact of biochar (10 g·kg-1) on reducing damage caused by compound heavy metals (Cd, Pb, and As) in cotton (Gossypium hirsutum L.). The results revealed that biochar reduced Cd concentrations by 24.9 % (roots), and decreased Pb concentrations by 37.1 % (roots) and 59.53 % (stems). Biochar maintained ionic homoeostasis by regulating the expression of metal transporter proteins such as ABC, HIPP, NRAMP3, PCR, and ZIP, and genes related to the carbon skeleton and plasma membrane. Biochar also downregulated genes related to photosynthesis, thereby increasing photosynthesis. Biochar re-established redox homoeostasis in cotton by activating signal transduction, which regulated the activity of the enzymes POD, SOD, and CAT activity; and the expression of related genes. This research revealed the molecular mechanism by which biochar confers resistance to the harmful effects of compound heavy metal toxicity in cotton. The application of biochar as a soil amendment to neutralise the toxicity of compound heavy metals is recommended for cash crop production.


Assuntos
Carvão Vegetal , Gossypium , Metais Pesados , Poluentes do Solo , Gossypium/genética , Gossypium/efeitos dos fármacos , Poluentes do Solo/toxicidade , Metais Pesados/toxicidade , Cádmio/toxicidade , Chumbo/toxicidade , RNA-Seq , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos
9.
Br J Haematol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191510

RESUMO

Wilms' tumour 1 (WT1) can function as an oncogene or a tumour suppressor. Our previous clinical cohort studies showed that low WT1 expression at diagnosis independently predicted poor outcomes in acute myeloid leukaemia (AML) with RUNX1::RUNX1T1, whereas it had an opposite role in AML with non-favourable cytogenetic risk (RUNX1::RUNX1T1-deficient). The molecular mechanism by which RUNX1::RUNX1T1 affects the prognostic significance of WT1 in AML remains unknown. In the present study, first we validated the prognostic significance of WT1 expression in AML. Then by using the established transfected cell lines and xenograft tumour model, we found that WT1 suppresses proliferation and enhances effect of cytarabine in RUNX1::RUNX1T1(+) AML but has opposite functions in AML cells without RUNX1::RUNX1T1. Furthermore, as a transcription factor, WT1 physically interacts with RUNX1::RUNX1T1 and acts as a co-factor together with RUNX1::RUNX1T1 to activate the expression of its target gene DUSP6 to dampen extracellular signal-regulated kinase (ERK) activity. When RUNX1::RUNX1T1-deficient, WT1 can activate the mitogen-activated extracellular signal-regulated kinase/ERK axis but not through targeting DUSP6. These results provide a mechanism by which WT1 together with RUNX1::RUNX1T1 suppresses cell proliferation through WT1/DUSP6/ERK axis in AML. The current study provides an explanation for the controversial prognostic significance of WT1 expression in AML patients.

10.
J Hazard Mater ; 478: 135499, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39141939

RESUMO

Uranium pollution in aquatic ecosystems poses a threat to organisms. However, the metabolism and toxicity of uranium along aquatic food chains remain unknown. Here, we established an artificial aquatic ecosystem to investigate the fate of uranium along the food chain and reveal its potential toxicity. The results displayed a dose- and time-dependent toxicity of uranium on algae, leading to cell deformation and impeding cell proliferation. When uranium-exposed algae are ingested by fish, uranium tends to concentrate in the intestinal system and bones of fish. Comparatively, direct water uranium exposure resulted in a remarkable uranium accumulation in the head, skin, and muscles of fish, suggesting different toxicity depending on distinct exposure pathways. High-level uranium pollution (20 mg L-1) intensifies the toxicity to fish through food intake compared to direct water exposure. It has also revealed that approximately 25 % and 20 % of U(VI) were reduced to lower valence forms during its accumulation in algae and fish, respectively, and over 10 % of U(IV, VI) converted to U(0) ultimately, through which uranium toxicity was mitigated due to the lower solubility and bioavailability. Overall, this study provides new insights into the fate of uranium during its delivery along the aquatic food chain and highlights the risks associated with consuming uranium-contaminated aquatic products.


Assuntos
Peixes , Cadeia Alimentar , Urânio , Poluentes Radioativos da Água , Urânio/toxicidade , Urânio/metabolismo , Animais , Poluentes Radioativos da Água/toxicidade , Peixes/metabolismo
11.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39177262

RESUMO

The T cell receptor (TCR) repertoire is pivotal to the human immune system, and understanding its nuances can significantly enhance our ability to forecast cancer-related immune responses. However, existing methods often overlook the intra- and inter-sequence interactions of T cell receptors (TCRs), limiting the development of sequence-based cancer-related immune status predictions. To address this challenge, we propose BertTCR, an innovative deep learning framework designed to predict cancer-related immune status using TCRs. BertTCR combines a pre-trained protein large language model with deep learning architectures, enabling it to extract deeper contextual information from TCRs. Compared to three state-of-the-art sequence-based methods, BertTCR improves the AUC on an external validation set for thyroid cancer detection by 21 percentage points. Additionally, this model was trained on over 2000 publicly available TCR libraries covering 17 types of cancer and healthy samples, and it has been validated on multiple public external datasets for its ability to distinguish cancer patients from healthy individuals. Furthermore, BertTCR can accurately classify various cancer types and healthy individuals. Overall, BertTCR is the advancing method for cancer-related immune status forecasting based on TCRs, offering promising potential for a wide range of immune status prediction tasks.


Assuntos
Aprendizado Profundo , Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias/imunologia , Biologia Computacional/métodos , Neoplasias da Glândula Tireoide/imunologia
12.
Int J Biol Macromol ; 279(Pt 2): 135193, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216584

RESUMO

The Myeloblastosis (MYB) transcription factor (TF) family is one of the largest transcription factor families in plants and plays an important role in various physiological processes. At present, there are few reports on birch (Betula platyphylla Suk.) of R2R3-MYB-TFs, and most BpMYBs still need to be characterized. In this study, 111 R2R3-MYB-TFs with conserved R2 and R3 MYB domains were identified. Phylogenetic tree analysis showed that the MYB family members of Arabidopsis thaliana and birch were divided into 23 and 21 subgroups, respectively. The latter exhibited an uneven distribution across 14 chromosomes. There were five tandem duplication events and 17 segmental duplication events between BpMYBs, and repeat events play an important role in the expansion of the family. In addition, the promoter region of MYBs was rich in various cis-acting elements, and MYB-TFs were involved in plant growth and development, light responses, biotic stress, and abiotic stress. RNA-sequencing (RNA-seq) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results revealed that most R2R3-MYB-TFs in birch responded to salt stress. In particular, the expression of BpMYBs in the S20 subfamily was significantly induced by salt, drought, abscisic acid, and methyl jasmonate stresses. Based on the weighted co-expression network analysis of physiological and RNA-seq data of birch under salt stress, a key MYB-TF BpMYB95 (BPChr12G24087), was identified in response to salt stress, and its expression level was induced by salt stress. BpMYB95 is a nuclear localization protein with transcriptional activation activity in yeast and overexpression of this gene significantly enhanced salt tolerance in Saccharomyces cerevisiae. The qRT-PCR and histochemical staining results showed that BpMYB95 exhibited the highest expression in the roots, young leaves, and petioles of birch plants. Overexpression of BpMYB95 significantly improved salt-induced browning and wilting symptoms in birch leaves and alleviated the degree of PSII photoinhibition caused by salt stress in birch seedlings. In conclusion, most R2R3-MYB-TFs found in birch were involved in the salt stress response mechanisms. Among these, BpMYB95 was a key regulatory factor that significantly enhanced salt tolerance in birch. The findings of this study provide valuable genetic resources for the development of salt-tolerant birch varieties.

13.
J Hazard Mater ; 479: 135625, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191012

RESUMO

There has been a serious health and environmental concern in conversion of inorganic mercury (Hg) to the neurotoxin, methylmercury (MeHg) by anaerobic microbes, while very little is known about the potential role of vitamin B9 (VB9) regulator in the biochemical generation of MeHg. This study innovatively investigated bacterial Hg methylation by Geobacter sulfurreducens PCA in the presence of VB9 under two existing scenarios. In the low-complexing scenario, the bacterial MeHg yield reached 68 % higher than that without VB9 within 72 h, which was attributed to free VB9-protected PCA cells relieving oxidative stress, as manifested by the increased expression of Hg methylation gene (hgcAB cluster by 19-48 %). The high-complexing scenario emphasized the intracellular Hg accumulation (38-45 %) after 12 h, as indicated by the increased expression of outer membrane protein-related and mercuric reductase-encoding genes, indicating the inefficient bioavailability of Hg due to a gradual shift from Hg reduction toward Hg0 re-oxidation controlled by competitive ligand exchange. These results suggested that VB9 application significantly raised the potential for bacterial Hg methylation and cellular accumulation, thus proposing insights into the biochemical behaviors of hazardous Hg in farming environments where vulnerable organisms are more possibly co-exposed to higher levels of Hg and VB9.


Assuntos
Geobacter , Mercúrio , Compostos de Metilmercúrio , Metilação , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Mercúrio/toxicidade , Mercúrio/metabolismo , Geobacter/metabolismo , Geobacter/genética , Complexo Vitamínico B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Vitamina B 12/análogos & derivados
14.
J Hazard Mater ; 479: 135669, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39208627

RESUMO

Landfill leachate treatment plants (LLTPs) harbor a vast reservoir of uncultured microbes, yet limited studies have systematically unraveled their functional potentials within LLTPs. Combining 36 metagenomic and 18 metatranscriptomic datasets from a full-scale LLTP, we unveiled a double-edged sword role of unknown species in leachate biotreatment and environmental implication. We identified 655 species-level genome bins (SGBs) spanning 47 bacterial and 3 archaeal phyla, with 75.9 % unassigned to any known species. Over 90 % of up-regulated functional genes in biotreatment units, compared to the leachate influent, were carried by unknown species and actively participated in carbon, nitrogen, and sulfur cycles. Approximately 79 % of the 37,366 carbohydrate active enzymes (CAZymes), with ∼90 % novelty and high expression, were encoded by unknown species, exhibiting great potential in biodegrading carbohydrate compounds linked to human meat-rich diets. Unknown species offered a valuable genetic resource of thousands of versatile, abundant, and actively expressed metabolic gene clusters (MGCs) and biosynthetic gene clusters (BGCs) for enhancing leachate treatment. However, unknown species may contribute to the emission of hazardous N2O/H2S and represented significant reservoirs for antibiotic-resistant pathogens that posed environmental safety risks. This study highlighted the significance of considering both positive and adverse effects of LLTP microbes to optimize LLTP performance.


Assuntos
Bactérias , Biodegradação Ambiental , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Bactérias/genética , Bactérias/metabolismo , Archaea/genética , Archaea/metabolismo , Instalações de Eliminação de Resíduos , Metagenômica , Multiômica
15.
Biomol Biomed ; 24(5): 1199-1215, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39213416

RESUMO

Cardiac arrhythmias are often linked to the overactivity of cardiac fibroblasts (CFs). Investigating the impact of poly (ADP-ribose) polymerase 9 (PARP9) on Angiotensin II (Ang II)-induced fibroblast activation and the therapeutic effects of pirfenidone (PFD) offers valuable insights into cardiac arrhythmias. This study utilized weighted gene co-expression network analysis (WGCNA), differential gene expression (DEG) analysis, protein-protein interaction (PPI), and receiver operating characteristic (ROC) analysis on the GSE42955 dataset to identify the hub gene with a significant diagnostic value. The ImmuCellAI tool revealed an association between PARP9 and immune cell infiltration. Our in vitro assessments focused on the influence of PFD on myofibroblast differentiation, transforming growth factor-beta (TGF-ß) expression, and Ang II-induced proliferation and migration in CFs. Additionally, we explored the impact on fibrosis markers and the TGF-ß/Smad signaling pathway in the context of PARP9 overexpression. Analysis of the GSE42955 dataset revealed PARP9 as a central gene with high clinical diagnostic value, linked to seven types of immune cells. The in vitro studies demonstrated that PFD significantly mitigates Ang II-induced CF proliferation, migration, and fibrosis. It also reduces Ang II-induced PARP9 expression and decreases fibrosis markers, including TGF-ß, collagen I, collagen III, and α-SMA. Notably, PARP9 overexpression can partially counteract PFD's inhibitory effects on CFs and modify the expression of fibronectin, CTGF, α-SMA, collagen I, collagen III, MMP2, MMP9, TGF-ß, and p-Smad2/3 in the TGF-ß/Smad signaling pathway. In summary, our findings suggest that PFD effectively counteracts the adverse effects of Ang II-induced CF proliferation and fibrosis, and modulates the TGF-ß/Smad signaling pathway and PARP9 expression. This identifies a potential therapeutic approach for managing myocardial fibrosis.


Assuntos
Angiotensina II , Miocárdio , Piridonas , Transdução de Sinais , Proteínas Smad , Fator de Crescimento Transformador beta , Piridonas/farmacologia , Piridonas/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Fibrose/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Movimento Celular/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Diferenciação Celular/efeitos dos fármacos , Ratos
16.
Sci China Life Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39172347

RESUMO

Abscisic acid (ABA)-based chemically induced proximity (CIP) is primarily mediated by the interaction of the ABA receptor pyrabactin resistance 1-like 1 (PYL1) and the 2C-type protein phosphatase ABI1, which confers ABA-induced proximity to their fusion proteins, and offers precise temporal control of a wide array of biological processes. However, broad application of ABA-based CIP has been limited by ABA response intensity. In this study, we demonstrated that ABA-induced interaction between another ABA receptor pyrabactin resistance 1 (PYR1) and ABI1 exhibited higher ABA response intensity than that between PYL1 and ABI1 in HEK293T cells. We engineered PYR1-ABI1 and PYL1-ABI1 into ABA-induced transcriptional activation tools in mammalian cells by integration with CRISPR/dCas9 and found that the tool based on PYR1-ABI1 demonstrated better ABA response intensity than that based on PYL1-ABI1 for both exogenous and endogenous genes in mammalian cells. We further achieved ABA-induced RNA m6A modification installation and erasure by combining ABA-induced PYR1-ABI1 interaction with CRISPR/dCas13, successfully inhibiting tumor cell proliferation. We subsequently improved the interaction of PYR1-ABI1 through phage-assisted continuous evolution (PACE), successfully generating a PYR1 mutant (PYR1m) whose interaction with ABI1 exhibited a higher ABA response intensity than that of the wild-type. In addition, we tested the transcriptional activation tool based on PYRm-ABI1 and found that it also showed a higher ABA response intensity than that of the wild type. These results demonstrate that we have developed a novel ABA-based CIP and further improved upon it using PACE, providing a new approach for the modification of other CIP systems.

17.
Heliyon ; 10(15): e35617, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170262

RESUMO

The relationship between bacteria and tumors has been the hot spot of clinical research in recent years. Pseudoglutamicibacter cumminsii is an aerobic Gram-positive bacterium commonly found in soil. Recent studies have identified P. cumminsii in patients with cutaneous and urinary tract infections. However, little is known on its pathogenesis as well as involvement in other clinical symptoms. In this study, we first report the isolation of P. cumminsii in blood of an epithelial mesothelioma patient. The clinical and laboratory characteristics of P. cumminsii were first described and evaluated. The pure colony of P. cumminsii was then identified using automated microorganism identification system and mass spectrum. The whole genome of the newly identified strain was sequenced with third generation sequencing (TGS). The assembled genome was further annotated and analyzed. Whole genomic and comparative genomic analysis revealed that the isolated P. cumminsii strain in this study had a genome size of 2,179,930 bp and had considerable unique genes compared with strains reported in previous findings. Further phylogenetic analysis showed that this strain had divergent phylogenetic relationship with other P. cumminsii strains. Based on these results, the newly found P. cumminsii strain was named P. cumminsii XJ001 (PC1). Virulence analysis identified a total of 71 pathogenic genes with potential roles in adherence, immune modulation, nutrition/metabolism, and regulation in PC1. Functional analysis demonstrated that the annotated genes in PC1 were mainly clustered into amino acid metabolism (168 genes), carbohydrate metabolism (107 genes), cofactor and vitamin metabolisms (98 genes), and energy metabolism (68 genes). Specifically, six genes including yodJ, idh, katA, pyk, sodA, and glsA were identified within cancer pathways, and their corresponding homologous genes have been documented with precise roles in human cancer. Collectively, the above results first identified P. cumminsii in the blood of tumor patients and further provide whole genomic landscape of the newly identified PC1 strain, shedding light on future studies of bacteria in tumorigenesis.

18.
Phys Rev Lett ; 133(4): 046503, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39121416

RESUMO

The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical bias voltages with negative intensity values, serving as a striking inelastic tunneling signal. This signal disappears above the spin ice formation temperature and has a dependence on the magnetic fields, demonstrating its intimate relation with the spin ice magnetism. We provide a two-level spin-flip model to explain the tunneling dips considering the spin ice magnetism under spin-orbit coupling. Our results uncover a local emergent excitation of spin ice magnetism in a kagome metal, suggesting that local electrical field induced spin flip climbs over a barrier caused by spin-orbital locking.

19.
Front Syst Neurosci ; 18: 1425491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157289

RESUMO

A few large-scale spatiotemporal patterns of brain activity (quasiperiodic patterns or QPPs) account for most of the spatial structure observed in resting state functional magnetic resonance imaging (rs-fMRI). The QPPs capture well-known features such as the evolution of the global signal and the alternating dominance of the default mode and task positive networks. These widespread patterns of activity have plausible ties to neuromodulatory input that mediates changes in nonlocalized processes, including arousal and attention. To determine whether QPPs exhibit variations across brain conditions, the relative magnitude and distribution of the three strongest QPPs were examined in two scenarios. First, in data from the Human Connectome Project, the relative incidence and magnitude of the QPPs was examined over the course of the scan, under the hypothesis that increasing drowsiness would shift the expression of the QPPs over time. Second, using rs-fMRI in rats obtained with a novel approach that minimizes noise, the relative incidence and magnitude of the QPPs was examined under three different anesthetic conditions expected to create distinct types of brain activity. The results indicate that both the distribution of QPPs and their magnitude changes with brain state, evidence of the sensitivity of these large-scale patterns to widespread changes linked to alterations in brain conditions.

20.
Front Psychol ; 15: 1329175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176053

RESUMO

Introduction: To evaluate the preoperative health-related quality of life (HRQoL) and influencing factors of HRQoL in patients undergoing thyroidectomy based on patient-reported outcomes. Materials and methods: Patients who were diagnosed and treated in Sichuan Cancer Hospital from February 2022 to December 2022 and were scheduled to undergo thyroidectomy were included. Each participant completed the basic information questionnaire and patient-reported outcome assessment scales before surgery. HRQoL was assessed using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30 (EORTC QLQ-C30), the Thyroid Cancer-Specific Quality of Life (THYCA-QoL), and the Hamilton Anxiety Scale (HAMA). The Wilcoxon rank sum test or the Kruskal-Wallis test was used to analyze the association between patient characteristics and HRQoL, and the variables with statistical significance were included in multiple linear regression analysis. Results: 450 patients were included in the study. According to the analysis of the THYCA-QoL scores, the psychological subscale was the most complained about. Anxiety was the most common symptom of the HAMA. Factors associated with worse general QoL on the EORTC QLQ-C30 included nondiagnostic/unsatisfactory fine-needle aspiration (FNA) result. Planned lateral neck dissection and nondiagnostic/unsatisfactory FNA result were influential factors for preoperative anxiety. Males and longer sleep duration were associated with better thyroid cancer-specific QoL, better general QoL, and less anxiety. Conclusion: The preoperative HRQoL of patients undergoing thyroidectomy was generally good. Females, insufficient sleep duration, planned lateral neck dissection, and nondiagnostic/unsatisfactory FNA result were associated with worse preoperative HRQoL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA