Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 296: 106980, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889134

RESUMO

Azobenzene liquid crystalline (ALC) ligand contains a cholesteryl group linked to an azobenzene moiety through a carbonyl dioxy spacer (C7) and terminated with an amine group as a polar head. The phase behaviour of the C7 ALC ligand at the air-water (A-W) interface is investigated employing surface manometry. The surface pressure-area per molecule isotherm shows that C7 ALC ligand exhibit two different phases following the phase sequence viz., liquid expanded (LE1 and LE2) and then collapse to three-dimensional crystallites. Further, our investigations under different pH conditions and in the presence of DNA reveal the following. Compared to the bulk, the acid dissociation constant (pKa) of an individual amine reduces to 5 at the interfaces. For pH (3.5) < pKa, the protonation of amine groups of C7 ALC ligand facilitates the condensation of the film and enhances the stability. For pH values > pKa, the phase behaviour of the ligand remains the same due to the partial dissociation of the amine groups. The presence of DNA in the sub-phase result in the expansion of isotherm to the higher area per molecule and the compressional modulus extracted reveals the phase sequence; liquid expanded, liquid condensed, followed by a collapse. Further, the kinetics of adsorption of DNA to the amine groups of the ligand is investigated, suggesting the interactions are influenced by surface pressure corresponding to different phases and pH of the sub-phase. Brewster angle microscope studies are carried out at different surface densities of the ligand as well as in the presence of DNA also supports this inference. Atomic force microscope is employed to acquire the surface topography and height profile of C7 ALC ligand (1 layer) after transferring on onto a silicon substrate using Langmuir Blodgett deposition. The difference in the surface topography and thickness of the film indicates the adsorption of DNA onto the amine groups of the ligand. The characteristic UV-visible absorption bands of the ligand films (10 layers) at the air-solid interface are tracked and the hypsochromic shift of these bands is also attributed to these DNA interactions.


Assuntos
DNA , Água , Propriedades de Superfície , Adsorção , Ligantes , Água/química
2.
Langmuir ; 37(38): 11203-11211, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34525810

RESUMO

Cholesteryl n-alkanoates of saturated fatty acids and their mixtures are widely studied in different physical states and also due to their significance in biology. Here, we address the miscibility of some homologues of cholesteryl n-alkanoates at interfaces, which are known to exhibit different (cholesteryl octanoate, ChC8, and cholesteryl stearate, ChC18) or the same (cholesteryl nonanoate, ChC9, and cholesteryl laurate, ChC12) molecular packing in bulk. Surface manometry and Brewster angle microscopy studies on ChC8 (cholesteryl-cholesteryl interaction, referred to as m-i packing)/ChC9 (cholesteryl-chain interaction, referred to as m-ii packing) and also on ChC18 (chain-chain interactions, referred to as the crystalline bilayer)/ChC9 mixtures reveal phase separation at the air-water (A-W) interface plausibly due to the difference in the molecular packing. In contrast, ChC12/ChC9 (both m-ii packing) mixtures form a homogeneous phase and exhibit a higher collapse pressure (almost twice) than that of ChC9 indicating higher stability. At the air-solid (A-S) interface, the height profiles extracted from the surface topography images using an atomic force microscope yielded thicknesses of 3.6 ± 0.1 and 5.6 ± 0.1 nm for ChC18/ChC9 mixtures (at 0.66 and 0.5 mole fractions (MF)) corresponding to individual assembly, whereas a uniform thickness of 3.5 ± 0.2 nm is obtained for the case of ChC12/ChC9 mixtures (at 0.2, 0.5, and 0.8 MF) corresponding to m-ii packing. Ellipsometry studies reveal that the desorption temperature increases with the mole fraction of ChC9 and attains a maximum at 406.8 ± 4.8 K for 0.4 MF of ChC9, beyond which it decreases. Raman spectroscopy studies are carried out for ChC12/ChC9 mixtures in the homogeneous phase and in the collapsed state. Here, the dependency of peak positions on different physical states was assessed. Our studies offer new insights into the compatibility of molecular packing influencing the phase behavior and may be of relevance to tear film studies and on the formation of crystals in atherosclerosis.


Assuntos
Água , Propriedades de Superfície , Temperatura
3.
Biochim Biophys Acta Biomembr ; 1863(11): 183695, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273298

RESUMO

We have studied the effect of acidic pH on the phase behavior of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry and x-ray scattering. Dispersions of DMPC in HCl solutions of pH = 4 and 3 behave identical to dispersions in water. The main transition temperature increases sharply and the pre-transition disappears at lower pH. An untilted gel phase is observed at pH = 2 and 1, in contrast to the tilted gel phase found at higher pH. The relatively large periodicity of the untilted gel phase, in comparison to that of the tilted gel phase occurring near neutral pH, clearly demonstrates the simultaneous charging and dehydration of the headgroups as the pH approaches the pK of the phosphate group. Headgroup dehydration at low pH also leads to the formation of DMPC crystallites and the inverted hexagonal phase at low and high temperatures, respectively, after a few days of incubation. These results show the significant effect of acidic pH on the phase behavior of zwitterionic lipids.


Assuntos
Dimiristoilfosfatidilcolina/química , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Transição de Fase , Varredura Diferencial de Calorimetria , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...