Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36144505

RESUMO

The temperature dependence of the electrical properties of composites formed by biphasic sodium titanate and poly(o-methoxyaniline) (Na2Ti3O7/Na2Ti6O13/POMA) with different concentrations of POMA (0%, 1%, 10%, 15%, 35% and 50%) in the ceramic matrix was determined from measurements of complex impedance. The structural details were studied by means of X-ray diffraction, confirming the formation of the Na2Ti3O7/Na2Ti6O13/POMA composites. The displacement of the (200) reflection from 2θ = 10.45° to 11.15° in the composites with 10 and 15% of POMA suggested the partial replacement of H+ for Na+ in the Na2Ti3O7 structure. The thermal properties were investigated by Thermogravimetry and Differential Thermal Analysis. The Thermogravimetry curves of the composites with POMA content of 1, 10 and 15% presented profiles similar to that of pure sodium titanate sample. The composites with 35 and 50% of POMA showed a process at temperatures around 60-70 °C, which was associated with water absorbed by the polymer. The analysis of the complex impedance spectroscopy measurements revealed that the electrical resistivity of the composites in the range from 0 to 35% increased by two orders of magnitude, with different values for each concentration. This positive temperature coefficient of resistivity was less noticeable in the composite with highest POMA mass content (50%). The rapid increase in resistivity caused an increase in the relaxation time calculated from the time domain. The electrical response of the 50% of POMA compound changes in relation to what was observed in the other compounds, which suggests that there is a saturation limit in the increase in resistivity with POMA content.


Assuntos
Polímeros , Titânio , Óxidos , Polímeros/química , Ácidos Polimetacrílicos , Temperatura , Água
2.
Inorg Chem ; 61(3): 1530-1537, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34990147

RESUMO

Corner-truncated cubic ß-Ag1.94Cu0.06MoO4 microcrystals were synthesized using the hydrothermal method. These were investigated by X-ray diffraction, confirming obtention of the spinel structure Fd3̅m. Through Raman spectroscopy are confirmed all modes for the point group of Oh7. The Egap shows a decrease of the band gap from 3.20 to 3.07 eV, with reduction of the conduction band occurring from -0.20 eV (ß-Ag2MoO4) to -0.13 eV (ß-Ag1.94Cu0.06MoO4), suggesting a p-type behavior for the Cu2+ ion. The field-emission scanning electron microscopy images confirm the morphological changes for ß-Ag2MoO4, where potato-like microcrystals were found. Meanwhile, corner-truncated cubic microcrystals for ß-Ag1.94Cu0.06MoO4. The photoluminescence (PL) spectrum confirms the increase in the PL emission for ß-Ag1.94Cu0.06MoO4, with suppression of the deep defects occurring in the structure caused by oxygen and silver atoms. In contrast, the green region is intensified because of distortions of the Ag-O and Mo-O bonds. Therefore, the ß-Ag1.94Cu0.06MoO4 solid solution has PL emission with CCT (4510 K) and CIE coordinates (x = 0.372 and y = 0.433), which could be interesting properties for applications as light-emitting diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...