Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 14(1): 1, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172960

RESUMO

Myofiber size regulation is critical in health, disease, and aging. MuSK (muscle-specific kinase) is a BMP (bone morphogenetic protein) co-receptor that promotes and shapes BMP signaling. MuSK is expressed at all neuromuscular junctions and is also present extrasynaptically in the mouse soleus, whose predominantly oxidative fiber composition is akin to that of human muscle. To investigate the role of the MuSK-BMP pathway in vivo, we generated mice lacking the BMP-binding MuSK Ig3 domain. These ∆Ig3-MuSK mice are viable and fertile with innervation levels comparable to wild type. In 3-month-old mice, myofibers are smaller in the slow soleus, but not in the fast tibialis anterior (TA). Transcriptomic analysis revealed soleus-selective decreases in RNA metabolism and protein synthesis pathways as well as dysregulation of IGF1-Akt-mTOR pathway components. Biochemical analysis showed that Akt-mTOR signaling is reduced in soleus but not TA. We propose that the MuSK-BMP pathway acts extrasynaptically to maintain myofiber size in slow muscle by promoting protein synthetic pathways including IGF1-Akt-mTOR signaling. These results reveal a novel mechanism for regulating myofiber size in slow muscle and introduce the MuSK-BMP pathway as a target for promoting muscle growth and combatting atrophy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Camundongos , Humanos , Animais , Lactente , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Músculo Esquelético/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo
2.
Mol Brain ; 15(1): 97, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451193

RESUMO

Intercellular communication between vascular and nerve cells mediated by diffusible proteins has recently emerged as a critical intrinsic program for neural development. However, whether the vascular smooth muscle cell (VSMC) secretome regulates the connectivity of neural circuits remains unknown. Here, we show that conditioned medium from brain VSMC cultures enhances multiple neuronal functions, such as neuritogenesis, neuronal maturation, and survival, thereby improving circuit connectivity. However, protein denaturation by heating compromised these effects. Combined omics analyses of donor VSMC secretomes and recipient neuron transcriptomes revealed that overlapping pathways of extracellular matrix receptor signaling and adhesion molecule integrin binding mediate VSMC-dependent neuronal development. Furthermore, we found that human arterial VSMCs promote neuronal development in multiple ways, including expanding the time window for nascent neurite initiation, increasing neuronal density, and promoting synchronized firing, whereas human umbilical vein VSMCs lack this capability. These in vitro data indicate that brain arteriolar VSMCs may carry direct instructive information for neural development through intercellular communication in vivo.


Assuntos
Encéfalo , Neurogênese , Humanos , Transporte Biológico , Neurônios , Miócitos de Músculo Liso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...