Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 201: 105866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685242

RESUMO

Pea Albumin 1, subunit b (PA1b) is a 37 amino acid peptide. It was extracted from pea seeds and showed significant insecticidal activity against certain insects, such as the mosquitoes Culex pipiens and Aedes aegyptii, cereal weevils (genus Sitophilus), and certain species of aphids. Considering that pea seeds are regularly consumed by humans and mammals, PA1b is assumed to be a promising bioinsecticide with no allergenicity or toxicity to hosts. To clarify this aspect, PA1b was applied to bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). The results revealed that LPS induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP-1) secretion, while PA1b depressed these cytokines release via inhibiting NF-κB signaling activation. In addition, PA1b protected mammary epithelial cells from impairment caused by LPS, because it reduced cell membrane permeability and subsequently reconstructed mammary epithelial cell viability. Moreover, it inhibited cell apoptosis accompanied with alleviated oxidative stress. Furthermore, PA1b prevented opening of mitochondrial permeability transition pores, in turn up-regulated mitochondrial membrane potential and ATP production. Therefore, PA1b improved mitochondrial function, which contributed to re-construction of mammary epithelial cell viability. In conclusion, PA1b alleviates LPS-induced inflammation of bovine mammary epithelial cells via inhibiting NF-κB signaling activation and protects bovine mammary epithelial cells by improving mitochondrial function. PA1b is a good therapeutic survival factor for mammary epithelial cells.


Assuntos
Células Epiteliais , Inflamação , Lipopolissacarídeos , Animais , Lipopolissacarídeos/farmacologia , Bovinos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inseticidas/toxicidade , Inseticidas/farmacologia , Feminino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Vet World ; 16(11): 2374-2381, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38152254

RESUMO

Background and Aim: African swine fever (ASF), a globally transmitted viral disease caused by ASF virus (ASFV), can severely damage the global trade economy. Laboratory diagnostic methods, including pathogen and serological detection techniques, are currently used to monitor and control ASF. Because the large double-stranded DNA genome of the mature virus particle is wrapped in a membrane, the stability of ASFV and its genome is maintained in most natural environments. This study aimed to investigate the stability of ASFV under different environmental conditions from both genomic and antibody perspectives, and to provide a theoretical basis for the prevention and elimination of ASFV. Materials and Methods: In this study, we used quantitative real-time polymerase chain reaction for pathogen assays and enzyme-linked immunosorbent assay for serological assays to examine the stability of the ASFV genome and antibody, respectively, under different environmental conditions. Results: The stability of the ASFV genome and antibody under high-temperature conditions depended on the treatment time. In the pH test, the ASFV genome and antibody remained stable in both acidic and alkaline environments. Disinfection tests revealed that the ASFV genome and antibody were susceptible to standard disinfection methods. Conclusion: Collectively, the results demonstrated that the ASFV genome is highly stable in favorable environments but are also susceptible to standard disinfection methods. This study focuses on the stability of the ASFV genome under different conditions and provides various standard disinfection methods for the prevention and control of ASF.

3.
Clin Genet ; 104(6): 613-624, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37706265

RESUMO

Cancer, one of the leading causes of death, usually commences and progresses as a result of a series of gene mutations and dysregulation of expression. With the development of clustered regularly interspaced palindromic repeat (CRISPR)/Cas9 gene-editing technology, it is possible to edit and then decode the functions of cancer-related gene mutations, markedly advance the research of biological mechanisms and treatment of cancer. This review summarizes the mechanism and development of CRISPR/Cas9 gene-editing technology in recent years and describes its potential application in cancer-related research, such as the establishment of human tumor disease models, gene therapy and immunotherapy. The challenges and future development directions are highlighted to provide a reference for exploring pathological mechanisms and potential treatment protocols of cancer.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Edição de Genes , Terapia Genética , Imunoterapia , Neoplasias/genética
4.
Int J Biol Macromol ; 251: 126347, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37586634

RESUMO

Atherosclerosis is a dominant cause of cardiovascular disease. Accumulation of low-density lipoproteins (LDL), formation of foam cells, and endothelial dysfunction within the arterial intima contribute to atherosclerotic plaque formation. Soy consumption is thought to have positive effect on the prevention of atherosclerosis. Therefore, in the present study, a novel soybean polypeptide dglycin was purified and characterized. Oral administration of 20 mg/g.d dglycin reduced 47.6 % lesion area, and 49.1 % lipid deposition in the atherosclerotic plaques in aortic roots in ApoE-/- mice. In addition, it decreased the levels of 26.0 % plasma low-density lipoprotein, 27.2 % triglyceride, 40.1 % cholesterol, 25.1 % malondialdehyde and 24.2 % tumor necrosis factor-alpha (TNFα). In vitro experiments revealed that dglycin inhibited inflammatory cytokine secretion from aortic endothelial cells via the inhibition of NF-κB signaling. Furthermore, it inhibited reactive oxygen species generation, subsequently enhanced cell viability, and protected aortic endothelial cells from necrosis and apoptosis via mitochondrial function improvement. On the other hand, dglycin prevented the uptake of oxidized LDL by macrophages via suppressing the expression of scavenger receptor class A1, which suggested that dglycin prevented foam cell formation. Therefore, dglycin alleviated the early-stage of atherosclerosis via depressing inflammation, lipid deposition, protecting aortic endothelial cells and preventing foam cell formation.

5.
Front Genet ; 14: 1141756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396040

RESUMO

Introduction: The ABO blood group system has important clinical significance in the safety of blood transfusion and organ transplantation. Numerous ABO variations, especially variations in the splice sites, have been identified to be associated with some ABO subtypes. Methods: Here, we performed the c.767T>C substitution of the ABO gene in human induced pluripotent stem cells (hiPSCs) by the adenosine base editor (ABE) system and described its characteristics at the genome level in detail. Results: The hiPS cell line with c.767T>C substitution maintained a normal karyotype (46, XX), expressed pluripotency markers, and showed the capability to spontaneously differentiate into all three germ layers in vivo. The genome-wide analysis demonstrated that the c.767T>C substitution in the ABO gene did not cause any detected negative effect in hiPSCs at the genome level. The splicing transcript analysis revealed that splicing variants were observed in the hiPSCs with ABO c.767T>C substitutions. Conclusion: All these results indicated that some splicing variants occurred in hiPSCs with c.767 T>C substitution of ABO gene, which probably had a significant effect on the formation of the rare ABO*Ael05/B101 subtype.

6.
Chem Biodivers ; 20(7): e202300050, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37314937

RESUMO

BACKGROUND: Liver cancer is an extremely common cancer with the highest mortality rate and poor prognosis. Owing to their low systemic toxicity and few side effects, natural compounds may provide better therapeutic effects for patients. (2E)-1-(2,4,6-trimethoxyphenyl)-3-(4-chlorophenyl)prop-2-en-1-one (TMOCC), a chalcone derivative, exhibits cytotoxicity towards many tumor cells. However, the anticancer mechanism of TMOCC has not been elucidated in human hepatocellular carcinoma (HCC). METHODS: Cell Counting Kit-8 and colony formation assays were used to evaluate the effects of TMOCC on viability and proliferation. Mitochondrial transmembrane potential and flow cytometry assays were used to detect apoptosis. The expression levels of proteins related to apoptosis, the RAS-ERK and AKT/FOXO3a signaling pathways were assessed using western blot. Potential targets of TMOCC were detected using molecular docking analysis. RESULTS: TMOCC inhibited viability and proliferation, and induced the loss of mitochondrial transmembrane potential, apoptosis and DNA double-strand breaks in both HCC cells. The RAS-ERK and AKT/FOXO3a signaling pathways were suppressed by TMOCC. Finally, ERK1, PARP-1, and BAX were identified as potential targets of TMOCC. CONCLUSION: Taken together, our results show that TMOCC promotes apoptosis by suppressing the RAS-ERK and AKT/FOXO3a signaling pathways. TMOCC may be a potential multi-target compound that is effective against liver cancer.


Assuntos
Carcinoma Hepatocelular , Chalcona , Chalconas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Chalconas/farmacologia , Chalconas/uso terapêutico , Chalcona/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
7.
Int J Cancer ; 152(6): 1069-1084, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029278

RESUMO

Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/epidemiologia , Mucosa Gástrica/patologia , Transformação Celular Neoplásica/patologia
8.
J Agric Food Chem ; 70(50): 15763-15775, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472370

RESUMO

Natural products are a rich resource for discovering innovational drugs. Herein, we isolated and characterized two compounds dihydroalterperylenol (DAP) and alterperylenol (AP) from Alternaria sp. MG1, an endophytic fungus isolated from Vitis quinquangularis, and investigated the underlying antitumor mechanism of AP. Mechanistically, AP inhibits the growth of HepG2 cells by targeting the selenoprotein thioredoxin reductase (TrxR) and ultimately induces cell apoptosis and ferroptosis. Compared to DAP, the α,ß-unsaturated carbonyl structure of AP is an indispensable moiety for its antitumor activity and TrxR inhibition. Specifically, inhibition of TrxR causes the extensive reactive oxygen species and consequently results in DNA damage, G2/M cell cycle arrest, and mitochondrial fission. Furthermore, ferroptosis is driven via excess toxic lipid peroxidation and elevation of intracellular iron levels via regulating iron-related proteins. In vivo validation also shows that AP owns anticancer activity in xenograft mice. Collectively, our results disclose a novel natural TrxR inhibitor AP exerting the antitumor effect via inducing cell apoptosis and ferroptosis and evidence that AP is a promising candidate agent for liver carcinoma therapy. The link of TrxR inhibition to ferroptosis further highlights the physiological importance of TrxR in regulating ferroptosis.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Inibidores Enzimáticos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Antineoplásicos/química
9.
Front Oncol ; 12: 978464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408134

RESUMO

Objectives: Protein post-translational modifications (PTMs) are closely associated with tumorigenesis, targeting PTMs of key proteins might be the focus of antitumor drug discovery. This study aimed to analyze the research progress on protein PTMs in tumorigenesis by performing qualitative and quantitative evaluations. Methods: The Web of Science Core Collection was selected as the database, and Science Citation Index Expanded was selected as the citation index. Visualization tools such as VOSviewer, CiteSpace, HistCite, and Online Analysis Platform of Bibliometrics were used to deeply explore the information of the retrieved research papers and analyze them in terms of research trends and main aspects of research. Results: The search yielded 3777 relevant articles. The results showed that the total number of PTMs related papers in cancer field has been increasing annually, with the largest number of papers published in the United States of America. The co-word cluster analysis showed that the research on PTMs and tumorigenesis was primarily focused on the following four areas, mechanism, histone, P53, key Technologies. Tumor metabolism, autophagy, and protein-protein interaction, histone ubiquitination have become new research topics. Conclusion: This study provides an important reference for the research direction and selection of topics of interest in the PTMs of cancer field.

10.
Nanoscale Res Lett ; 17(1): 68, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882718

RESUMO

Gold nanorods (AuNRs) are ideal inorganic nanophotothermal agents with unique characteristics, including local surface plasmon resonance effects, easy scale preparation and functional modification, and good biocompatibility. This review summarizes several recent advances in AuNRs-based photothermal therapy (PTT) research. Functionalized AuNRs photothermal agents have optimized biocompatibility and targeting properties. The multifunctional AuNRs nanoplatform composite structure meets the requirements for synergistic effects of PTT, photoacoustic imaging, and other therapeutic methods. Photothermal therapy with AuNRs (AuNRs-PTT) is widely used to treat tumors and inflammatory diseases; its tumor-targeting, tumor metastasis inhibition, and photothermal tumor ablation abilities have remarkable curative effects. An in-depth study of AuNRs in living systems and the interactions between biological structure, nanomaterial, and near-infrared irradiation could lay the foundation for further clinical research and the broad application of AuNRs in PTT.

11.
Mol Med Rep ; 25(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738629

RESUMO

Modulating the biological status of endothelial progenitor cells (EPCs), such as function and survival, is essential for therapeutic angiogenesis in ischemic vascular disease environments. This study aimed to explore the role and molecular mechanisms underlying Netrin­1 in the viability and angiogenic function of EPCs. EPCs were isolated from the bone barrow of adult C57/BL6 mice. The apoptosis and various functions of EPCs were analyzed in vitro by manipulating the expression of Netrin­1. The TUNEL assay was performed to detect apoptotic EPCs. Cell migration and tube formation assays were performed to detect EPC function. Trypan blue staining was performed to detect cell viability. Western blot analysis was performed to detect the protein expression levels of Netrin­1, CD146 and apoptotic factors. Quantitative PCR analysis was performed to detect the expression levels of Netrin­1 receptors. The results demonstrated that treatment with exogenous Netrin­1 promoted EPC migration and tube formation, whereas transfection with small interfering (si)RNA targeting Netrin­1 exhibited the opposite effects. Exogenous Netrin­1 protected EPCs from hypoxia­induced apoptosis, whereas the interruption of endogenous Netrin­1 enhancement under hypoxia by Netrin­1­siRNA exacerbated the apoptosis of EPCs. Furthermore, CD146, one of the immunoglobulin receptors activated by Netrin­1, was screened for in the present study. Results demonstrated that CD146 did not participate in Netrin­1­promoted EPC function, but mediated the anti­apoptotic effects of Netrin­1 in EPCs. In conclusion, Netrin­1 enhanced the angiogenic function of EPCs and alleviated hypoxia­induced apoptosis, which was mediated by CD146. This biological function of Netrin­1 may provide a potential therapeutic option to promote EPCs for the treatment of ischemic vascular diseases.


Assuntos
Apoptose/fisiologia , Netrina-1/metabolismo , Animais , Antígeno CD146/metabolismo , Antígeno CD146/fisiologia , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/fisiologia , Expressão Gênica/genética , Hipóxia/metabolismo , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Netrina-1/fisiologia , Transdução de Sinais/efeitos dos fármacos
12.
Front Cell Dev Biol ; 10: 1093534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712969

RESUMO

The shortage of donor resources has greatly limited the application of clinical xenotransplantation. As such, genetically engineered pigs are expected to be an ideal organ source for xenotransplantation. Most current studies mainly focus on genetically modifying organs or tissues from donor pigs to reduce or prevent attack by the human immune system. Another potential organ source is interspecies chimeras. In this paper, we reviewed the progress of the genetically engineered pigs from the view of immunologic barriers and strategies, and discussed the possibility and challenges of the interspecies chimeras.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...