Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 178: 116933, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832904

RESUMO

Osteosarcoma is a primary malignant bone tumor. Although surgery and chemotherapy are the main treatment methods, the overall curative effect remains unsatisfactory. Therefore, there is an urgent need to develop new therapeutic options for osteosarcoma. In this study, the effect and molecular mechanism of osteoblast-derived exosomes on the treatment of osteosarcoma were evaluated. Human primary osteoblasts were cultured to observe the effects of osteoblast-derived exosomes on the osteogenic differentiation of osteosarcoma cells both in vitro and in vivo. Alizarin red staining and alkaline phosphatase detection were used to evaluate the degree of osteogenic differentiation, and immunofluorescence and Western blotting were used to detect protein expression. The results showed that osteoblast-derived exosomes effectively inhibited the proliferation of osteosarcoma cells and promoted their mineralization in vitro. The exosomes also significantly inhibited tumor growth and promoted tumor tissue mineralization in vivo. Osteoblast-derived exosomes upregulated the expression of bone sialoprotein, osteonectin, osteopontin, runt-related transcription factor 2, and Wnt inhibitory factor 1, downregulated the expression of cyclin D1, and suppressed the nuclear accumulation of ß-catenin and promoted its phosphorylation in vitro and in vivo. However, these effects were significantly reversed by upregulated gene (URG) 4 overexpression. These findings suggest that osteoblast-derived exosomes could activate the osteogenic differentiation process in osteosarcoma cells and promote their differentiation by targeting the URG4/Wnt signaling pathway.


Assuntos
Neoplasias Ósseas , Exossomos , Osteossarcoma , Humanos , Via de Sinalização Wnt , Osteogênese , Exossomos/metabolismo , Exossomos/patologia , Osteoblastos/metabolismo , Osteossarcoma/patologia , Diferenciação Celular/fisiologia , Células Cultivadas , beta Catenina/metabolismo
2.
Environ Sci Technol ; 57(48): 19463-19472, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37943691

RESUMO

Prebiotics may stimulate beneficial gut microorganisms. However, it remains unclear whether they can lower the oral bioavailability of early life arsenic (As) exposure via regulating gut microbiota and altering As biotransformation along the gastrointestinal (GI) tract. In this study, weanling mice were exposed to arsenate (iAsV) via diet (7.5 µg As g-1) amended with fructooligosaccharides (FOS), galactooligosaccharides (GOS), and inulin individually at 1% and 5% (w/w). Compared to As exposure control mice, As concentrations in mouse blood, liver, and kidneys and As urinary excretion factor (UEF) were reduced by 43.7%-74.1% when treated with 5% GOS. The decrease corresponded to a significant proliferation of Akkermansia and Psychrobacter, reduced percentage of inorganic arsenite (iAsIII) and iAsV by 47.4% and 65.4%, and increased proportion of DMAV in intestinal contents by 101% in the guts of mice treated with 5% GOS compared to the As control group. In contrast, FOS and inulin either at l% or 5% did not reduce As concentration in mouse blood, liver, and kidneys or As UEF. These results suggest that GOS supplementation may be a gut microbiota-regulating approach to lower early life As exposure via stimulating the growth of Akkermansia and Psychrobacter and enhancing As methylation in the GI tract.


Assuntos
Arsênio , Microbioma Gastrointestinal , Camundongos , Animais , Inulina/metabolismo , Prebióticos , Fígado/metabolismo
3.
Heliyon ; 8(8): e10021, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35942280

RESUMO

Silver nanoparticles (AgNPs) synthesized from plant extracts have recently emerged as a rapidly growing field with numerous applications in pharmaceutical and clinical contexts. The purpose of this research is to come up with a novel method for the biosynthesis of silver nanoparticles that use Eucommia ulmoides leaf extract as a reducing agent. The synthesis of AgNPs was confirmed using UV-vis spectroscopy, and the properties of AgNPs were characterized using Transmission Electron Microscope, Fourier Infrared Spectrometer, X-ray diffraction, Thermogravimetric Analysis, and Zeta potential. The results showed that the AgNPs exhibited a characteristic absorption peak at 430 nm, their diameter ranged from 4 nm to 52 nm, and C, O, and Cl elements, which might represent flavonoids and phenolic components absorbed on the surface of AgNPs. The zeta potential of AgNPs was found to be -30.5 mV, which indicates repulsion among AgNPs and they have good dispersion stability. AgNPs have been found to suppress the tyrosinase activity both in mushroom tyrosinase and A375 cells, as well as diminish ROS formation in HaCat cells. According to this study, AgNPs is a novel material that can enhance skin health by preventing melanin development.

4.
PeerJ ; 10: e13078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282284

RESUMO

Hydrogen sulphide (H2S), a crucial gas signal molecule, has been reported to be involved in various processes related to development and adversity responses in plants. However, the effects and regulatory mechanism of H2S in controlling Fusarium head blight (FHB) in wheat have not been clarified. In this study, we first reported that H2S released by low concentrations of sodium hydrosulphide (NaHS) could significantly alleviate the FHB symptoms caused by Fusarium graminearum (F. graminearum) in wheat. We also used coleoptile inoculation to investigate the related physiological and molecular mechanism. The results revealed that FHB resistance was strongly enhanced by the H2S released by NaHS, and 0.3 mM was confirmed as the optimal concentration. H2S treatment dramatically reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA) while enhancing the activities of antioxidant enzymes. Meanwhile, the relative expressions levels of defence-related genes, including PR1.1, PR2, PR3, and PR4, were all dramatically upregulated. Our results also showed that H2S was toxic to F. graminearum by inhibiting mycelial growth and spore germination. Taken together, the findings demonstrated the potential value of H2S in mitigating the adverse effects induced by F. graminearum and advanced the current knowledge regarding the molecular mechanisms in wheat.


Assuntos
Fusarium , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Triticum/genética , Plântula , Peróxido de Hidrogênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...