Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquac Nutr ; 2023: 1397508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901279

RESUMO

Excessive carbohydrate intake leads to metabolic disorders in fish. However, few literatures have reported the appropriate carbohydrate level for zebrafish, and the metabolic response to dietary carbohydrate remains largely unknown in zebrafish. This study assessed the responses of zebrafish and zebrafish liver cell line (ZFL) to different carbohydrate levels. In vivo results showed that ≥30% dietary dextrin levels significantly increased the plasma glucose content, activated the expression of hepatic glycolysis-related genes, and inhibited the expression of hepatic gluconeogenesis-related genes in zebrafish. Oil red O staining, triglyceride content, and Hematoxylin-Eosin staining results showed that dietary dextrin levels of ≥30% significantly increased lipid accumulation and liver damage, as well as processes related to glycolipid metabolism and inflammation in zebrafish. In ZFL, the transcription factor sterol regulatory element binding protein-1c signal intensity, 4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY 493/503) signal intensity, and triglyceride content were also significantly increased when incubated in high glucose, along with abnormal glycolipid metabolism and increased inflammation-related genes. In conclusion, we demonstrated that the maximum dietary carbohydrate level in adult zebrafish should be less than 30%. Excess dietary carbohydrates (30%-50%) caused hepatic steatosis and damage to zebrafish, similar to that seen in aquaculture species. Thus, this study assessed responses to different carbohydrate levels in zebrafish and illustrated that zebrafish is an optimal model for investigating glucose metabolism in some aquatic animals.

2.
J Nutr Biochem ; 122: 109452, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37748621

RESUMO

Insulin-sensitive lipogenesis dominates the body lipid deposition; however, nonalcoholic fatty liver disease (NAFLD) develops in the insulin-resistant state. The regulation mechanism of insulin resistance-driven NAFLD remains elusive. Using zebrafish model of insulin resistance (ZIR, insrb-/-) and mouse hepatocytes (NCTC 1469), we explored the regulation mechanism of insulin resistance-driven hepatic lipid deposition under the stimulation of carbohydrate diet (CHD). In ZIR model, insulin resistance induced hyperlipidemia and elevated hepatic lipid deposition via elevating the gene/protein expressions of lipogenic enzymes, that was activated by carbohydrate response element binding protein (ChREBP), rather than sterol regulatory element binding proteins 1c (SREBP-1c). The metabolomic analysis in zebrafish and silencing of chrebp in mouse hepatocytes revealed that the increased hepatic frucotose-6-phosphate (F6P) and glucose-6-phosphate (G6P) promoted the ChREBP-mediated lipid deposition. We further identified that F6P alone was sufficient to activate ChREBP-mediated lipid deposition by a SREBP-1c-independent manner. Moreover, we clarified the suppressed hepatic phosphofructokinase/glucose-6-phosphatase functions and the normal glucokinase function preserved by glucose transporter 2 (GLUT2) manipulated the increased F6P/G6P content in ZIR. In conclusion, the present study revealed that insulin resistance promoted hepatic lipid deposition via the F6P/G6P-mediated ChREBP activation. Our findings deciphered the main regulation pathway for the liver lipid deposition in the insulin-resistant state and identified F6P as a new potential regulator for ChREBP.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Resistência à Insulina/fisiologia , Peixe-Zebra/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fosfatos/metabolismo , Fígado/metabolismo , Proteínas/metabolismo , Insulina/metabolismo , Lipogênese , Lipídeos , Carboidratos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
3.
Aquac Nutr ; 2023: 6672985, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520290

RESUMO

The present study investigated the sequential regulation signals of high-carbohydrate diet (HCD)-induced hepatic lipid deposition in gibel carp (Carassius gibelio). Two isonitrogenous and isolipidic diets, containing 25% (normal carbohydrate diet, NCD) and 45% (HCD) corn starch, were formulated to feed gibel carp (14.82 ± 0.04 g) for 8 weeks. The experimental fish were sampled at 2nd, 4th, 6th, and 8th week. In HCD group, the hyperlipidemia and significant hepatic lipid deposition (oil red O area and triglyceride content) was found at 4th, 6th, and 8th week, while the significant hyperglycemia was found at 2nd, 4th, and 8th week, compared to NCD group (P < 0.05). HCD induced hepatic lipid deposition via increased hepatic lipogenesis (acc, fasn, and acly) but not decreased hepatic lipolysis (hsl and cpt1a). When compared with NCD group, HCD significantly elevated the hepatic sterol regulatory element binding proteins 1 (SREBP1) signals (positive hepatocytes and fluorescence intensity) at 4th, 6th, and 8th week (P < 0.05). The hepatic SREBP1 signals increased from 2nd to 6th week, but decreased at 8th week due to substantiated insulin resistance (plasma insulin levels, plasma glucose levels, and P-AKTSer473 levels) in HCD group. Importantly, the hepatic carbohydrate response element binding protein (ChREBP) signals (positive hepatocytes, fluorescence intensity, and expression levels) were all significantly elevated by HCD-induced glucose-6-phosphate (G6P) accumulation at 2nd, 4th, 6th, and 8th week (P < 0.05). Compared to 2nd and 4th week, the hepatic ChREBP signals and G6P contents was significantly increased by HCD at 6th and 8th week (P < 0.05). The HCD-induced G6P accumulation was caused by the significantly increased expression of hepatic gck, pklr, and glut2 (P < 0.05) but not 6pfk at 4th, 6th, and 8th week, compared to NCD group. These results suggested that the HCD-induced hepatic lipid deposition was mainly promoted by SREBP1 in earlier stage and by ChREBP in later stage for gibel carp. This study revealed the sequential regulation pathways of the conversion from feed carbohydrate to body lipid in fish.

4.
Front Nutr ; 10: 1187283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305084

RESUMO

Glucose metabolism in fish remains a controversial area of research as many fish species are traditionally considered glucose-intolerant. Although energy homeostasis remodeling has been observed in fish with inhibited fatty acid ß-oxidation (FAO), the effects and mechanism of the remodeling caused by blocked glucose uptake remain poorly understood. In this study, we blocked glucose uptake by knocking out glut2 in zebrafish. Intriguingly, the complete lethality, found in Glut2-null mice, was not observed in glut2-/- zebrafish. Approxiamately 30% of glut2-/- fish survived to adulthood and could reproduce. The maternal zygotic mutant glut2 (MZglut2) fish exhibited growth retardation, decreased blood and tissue glucose levels, and low locomotion activity. The decreased pancreatic ß-cell numbers and insulin expression, as well as liver insulin receptor a (insra), fatty acid synthesis (chrebp, srebf1, fasn, fads2, and scd), triglyceride synthesis (dgat1a), and muscle mechanistic target of rapamycin kinase (mtor) of MZglut2 zebrafish, suggest impaired insulin-dependent anabolic metabolism. Upregulated expression of lipolysis (atgl and lpl) and FAO genes (cpt1aa and cpt1ab) in the liver and proteolysis genes (bckdk, glud1b, and murf1a) in muscle were observed in the MZglut2 zebrafish, as well as elevated levels of P-AMPK proteins in both the liver and muscle, indicating enhanced catabolic metabolism associated with AMPK signaling. In addition, decreased amino acids and elevated carnitines of the MZglut2 zebrafish supported the decreased protein and lipid content of the whole fish. In summary, we found that blocked glucose uptake impaired insulin signaling-mediated anabolism via ß-cell loss, while AMPK signaling-mediated catabolism was enhanced. These findings reveal the mechanism of energy homeostasis remodeling caused by blocked glucose uptake, which may be a potential strategy for adapting to low glucose levels.

5.
Front Nutr ; 9: 1010859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211485

RESUMO

High carbohydrate diet (HCD) causes metabolism disorder and intestinal damages in aquaculture fish. Berberine has been applied to improve obesity, diabetes and NAFLD. However, whether berberine contributes to the alleviation of HCD-induced intestinal damages in aquaculture fish is still unclear. Here we investigated the effects and mechanism of berberine on HCD-induced intestinal damages in largemouth bass (Micropterus salmoides). We found dietary berberine (50 mg/kg) improved the physical indexes (VSI and HSI) without affecting the growth performance and survival rate of largemouth bass. Importantly, the results showed that dietary berberine reduced the HCD-induced tissue damages and repaired the barrier in the intestine of largemouth bass. We observed dietary berberine significantly suppressed HCD-induced intestinal apoptosis rate (from 31.21 to 8.35%) and the activity level of Caspase3/9 (P < 0.05) by alleviating the inflammation (il1ß, il8, tgfß, and IL-6, P < 0.05) and ER stress (atf6, xbp1, perk, eif2α, chopa, chopb, and BIP, P < 0.05) in largemouth bass. Further results showed that dietary berberine declined the HCD-induced excessive lipogenesis (oil red O area, TG content, acaca, fasn, scd, pparγ, and srebp1, P < 0.05) and promoted the lipolysis (hsl, lpl, cpt1a, and cpt2, P < 0.05) via activating adenosine monophosphate-activated protein kinase (AMPK, P < 0.05) and inhibiting sterol regulatory element-binding protein 1 (SREBP1, P < 0.05) in the intestine of largemouth bass. Besides, we also found that dietary berberine significantly promoted the hepatic lipid catabolism (hsl, lpl, cpt1a, and cpt2, P < 0.05) and glycolysis (pk and ira, P < 0.05) to reduce the systematic lipid deposition in largemouth bass fed with HCD. Therefore, we elucidated that 50 mg/kg dietary berberine alleviated HCD-induced intestinal damages and improved AMPK/SREBP1-mediated lipid metabolism in largemouth bass, and evaluated the feasibility for berberine as an aquafeed additive to enhance the intestinal function of aquaculture species.

6.
Front Microbiol ; 13: 1016662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212854

RESUMO

Microalgae have beneficial effects on the performance of fish as additives and they are becoming a promising alternative to fishmeal as macronutrient ingredients. However, the impact on the fish intestinal microbiome and the function, caused by microalgae as protein sources in diets, remains unclear. This study aimed to determine the composition and potential function of the intestinal microbial community of largemouth bass (Micropterus salmoides) fed diets at five replacement levels (0, 25, 50, 75 and 100%) of fishmeal by Chlorella meal in a basal diet (400 g kg-1) after 8 weeks. The results showed significant decreases in unique amplicon sequence variants in the intestine at the higher levels of fishmeal replacement. At 50% of fishmeal replacement, dietary inclusions of Chlorella meal had no impact on species richness and Shannon diversity and the community structure of the intestinal microbiota. However, high levels of fishmeal replacement (75 and 100%) significantly induced intestinal community disturbance and diversity loss in largemouth bass. Responding to the high fishmeal replacement level, the dominant genus Cetobacterium and Pleslomonas sharply increased and several taxa from Lactobacillus decreased significantly. Functional data predicted by PICRUSt revealed that nutrition-related metabolism was dominant in the intestinal microbiota of fish fed all the five diets, although some potential functions, particularly amino acid and lipid metabolisms, and energy metabolism, were upregulated firstly, and then downregulated in fish fed diets with the increase of dietary Chlorella meal. Meanwhile, certain pathways were not enriched in intestinal microbiome until up to 75% of fishmeal replacement, such as carbohydrate metabolism, and cofactors and vitamins metabolism. To conclude, this study reveals that fishmeal replacement (50%) by Chlorella meal at the level of 237 g kg-1 in diets is feasible for largemouth bass without impairing the microbiome structure and the metabolism function, providing an alternative strategy for evaluating the possibility of fishmeal replacement by microalgae in aquafeeds.

7.
Antioxidants (Basel) ; 11(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35624844

RESUMO

Caloric restriction is known to suppress oxidative stress in organ systems. However, whether caloric/feed restriction alleviates chronic thermal stress in aquatic animals remains unknown. Here, we set up three feeding rations: 3% BW (3% body weight/day), 2.5% BW (restricted feeding, 2.5% body weight/day) and 2% BW (high restricted feeding, 2% body weight/day), to investigate the effects and mechanism of feed restriction on improving chronic heat-induced (27 to 31 °C) liver peroxidation and damages in channel catfish (Ictalurus punctatus). The results showed that, compared to 3% BW, both 2.5% BW and 2% BW significantly reduced the liver expressions of hsc70, hsp70 and hsp90, but only 2.5% BW did not reduce the growth performance of channel catfish. The 2.5% BW and 2% BW also reduced the lipid deposition (TG) and improved the antioxidant capacity (CAT, SOD, GSH and T-AOC) in the liver of channel catfish. The heat-induced stress response (plasma glucose, cortisol and NO) and peroxidation (ROS and MDA) were also suppressed by either 2.5% BW or 2% BW. Moreover, 2.5% BW or 2% BW overtly alleviated liver inflammation and damages by reducing endoplasmic reticulum (ER) stress (BIP and Calnexin) and cell apoptosis (BAX, Caspase 3 and Caspase 9) in the liver of channel catfish. In conclusion, 2.5% body weight/day is recommended to improve the antioxidant capacity and liver health of channel catfish during the summer season, as it alleviates liver peroxidation and damages via suppressing lipid accumulation under chronic thermal stress.

8.
Anim Nutr ; 10: 26-40, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35601256

RESUMO

Chlorella meal is a potential protein source for aquafeeds. However, the physiological response of carnivorous fish fed Chlorella meal remains elusive. This study evaluated the effects of replacing dietary fish meal with Chlorella meal on growth performance, pigmentation, and liver health in largemouth bass. Five diets were formulated to replace dietary fish meal of 0% (C0, control), 25% (C25), 50% (C50), 75% (C75), and 100% (C100) with Chlorella meal, respectively. Total 300 fish (17.6 ± 0.03 g) were randomly assigned to 15 tanks (3 tanks/group). Fish were fed the experimental diet twice daily for 8 weeks. The increased dietary Chlorella meal quadratically influenced the final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), and feed intake (FI), which were significantly lower in the C100 group than in the other groups (P < 0.05). The feed conversion ratio (FCR) increased linearly or quadratically with dietary Chlorella meal. Dietary Chlorella meal linearly or quadratically increased the lutein content of plasma, liver, and dorsal muscle of largemouth bass (P < 0.05). Compared to the C0 group, all supplemented Chlorella meal groups significantly improved the yellowness (b∗) of the dorsal body (1.5 to 2.0 fold), abdominal body (1.5 to 1.8 fold), and dorsal muscle (3.8 to 5.4 fold) of largemouth bass (P < 0.05). In addition, compared to the C0 group, the liver vacuolation area of fish was significantly increased in the C75 and C100 groups (P < 0.05). Transcriptional levels of apoptosis-related genes of ß-cell lymphoma-2 (bcl2), caspase-9-like (casp9), and caspase-3a (casp3) were markedly upregulated (0.9 to 1.6 fold) in the C100 group compared to the C0 group (P < 0.05). Based on the quadratic regression analysis between FBW, WGR, or SGR and dietary Chlorella meal level, largemouth bass had the best growth when replacing 31.7% to 32.6% of fish meal with 15.03% to 15.43% dietary Chlorella meal. The present results indicated that dietary supplementation with Chlorella meal (11.85% to 47.45%) significantly enhanced the pigmentation; however, total replacement of fish meal (40%) with Chlorella meal (47.45%) caused growth retardation, apoptosis, and liver damage in largemouth bass.

9.
Front Physiol ; 12: 764987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992547

RESUMO

An 8-week feeding trial was conducted to explore the effects of replacement of dietary fishmeal by cottonseed protein concentrate (CPC) on growth performance, liver health, and intestine histology of largemouth bass. Four isoproteic and isolipidic diets were formulated to include 0, 111, 222, and 333 g/kg of CPC, corresponding to replace 0% (D1), 25% (D2), 50% (D3), and 75% (D4) of fishmeal. Two hundred and forty largemouth bass (15.11 ± 0.02 g) were randomly divided into four groups with three replicates per group. During the experiment, fish were fed to apparent satiation twice daily. Results indicated that CPC could replace up to 50% fishmeal in a diet for largemouth bass without significant adverse effects on growth performance. However, weight gain rate (WGR), specific growth rate (SGR), feed efficiency (FE), and condition factor (K) of the largemouth bass were significantly decreased when 75% of dietary fishmeal that was replaced by CPC. The whole body lipid content was increased with the increasing of dietary CPC levels. Oil red O staining results indicated that fish fed the D4 diet showed an aggravated fat deposition in the liver. Hepatocytes exhibited serious degeneration, volume shrinkage, and inflammatory cells infiltration in the D4 group. Intestinal villi appeared shorter and sparse with severe epithelial damage in the D4 group. The transcription levels of anti-inflammatory cytokines, such as transforming growth factor ß (tgf-ß), interleukin 10 (il-10), and interleukin 11 ß (il-11ß), were downregulated in the D4 group. The lipid metabolism-related genes carnitine palmitoyl transferase 1 (cpt1), peroxisome proliferator-activated receptor α (pparα), and target of rapamycin (TOR) pathway were also significantly downregulated in the D4 group. It was concluded that suitable replacement of fishmeal by less than 222 g CPC/kg diet had a positive effect on growth performance of fish, but an excessive substitution of 75% fishmeal by CPC would lead to the suppressed growth, liver inflammation, and intestinal damage of largemouth bass.

10.
Br J Nutr ; 123(6): 627-641, 2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-31813383

RESUMO

An oral starch administration trial was used to evaluate glucose homoeostasis in grass carp (Ctenopharyngodon idella) and Chinese longsnout catfish (Leiocassis longirostris Günther). Fish were administered with 3 g of a water and starch mixture (with 3:2 ratio) per 100 g body weight after fasting for 48 h. Fish were sampled at 0, 1, 3, 6, 12, 24 and 48 h after oral starch administration. In grass carp, plasma levels of glucose peaked at 3 h but returned to baseline at 6 h. However, in Chinese longsnout catfish, plasma glucose levels peaked at 6 h and returned to baseline at 48 h. The activity of intestinal amylase was increased in grass carp at 1 and 3 h, but no significant change in Chinese longsnout catfish was observed. The activity of hepatic glucose-6-phosphatase fell significantly in grass carp but change was not evident in Chinese longsnout catfish. The expression levels and enzymic activity of hepatic pyruvate kinase increased in grass carp, but no significant changes were observed in the Chinese longsnout catfish. Glycogen synthase (gys) and glycogen phosphorylase (gp) were induced in grass carp. However, there was no significant change in gys and a clear down-regulation of gp in Chinese longsnout catfish. In brief, compared with Chinese longsnout catfish, grass carp exhibited a rapid increase and faster clearance rate of plasma glucose. This effect was closely related to significantly enhanced levels of digestion, glycolysis, glycogen metabolism and glucose-induced lipogenesis in grass carp, as well as the inhibition of gluconeogenesis.


Assuntos
Carpas/metabolismo , Peixes-Gato/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Amido/administração & dosagem , Administração Oral , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...