Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 45(3): 501-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22451274

RESUMO

Catabolism of amino acids (AA) by intestinal bacteria greatly affects their bioavailability in the systemic circulation and the health of animals and humans. This study tests the novel hypothesis that L-glutamine regulates AA utilization by luminal bacteria of the small intestine. Pure bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the jejunum or ileum of pigs were cultured in the presence of 0-5 mM L-glutamine under anaerobic conditions. After 3 h of incubation, samples were taken for the determination of AA utilization. Results showed concentration-dependent increases in the utilization of glutamine in parallel with the increased conversion of glutamine into glutamate in all the bacteria. Complete utilization of asparagine, aspartate and serine was observed in pure bacterial strains after the 3-h incubation. The addition of glutamine reduced the net utilization of asparagine by both jejunal and ileal mixed bacteria. Net utilization of lysine, leucine, valine, ornithine and serine by jejunal or ileal mixed bacteria decreased with the addition of glutamine in a concentration-dependent manner. Collectively, glutamine dynamically modulates the bacterial metabolism of the arginine family of AA as well as the serine and aspartate families of AA and reduced the catabolism of most AA (including nutritionally essential and nonessential AA) in jejunal or ileal mixed bacteria. The beneficial effects of glutamine on gut nutrition and health may involve initiation of the signaling pathways related to AA metabolism in the luminal bacteria of the small intestine.


Assuntos
Aminoácidos/metabolismo , Escherichia coli/metabolismo , Glutamina/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Klebsiella/metabolismo , Streptococcus/metabolismo , Animais , Escherichia coli/efeitos dos fármacos , Glutamina/farmacologia , Intestino Delgado/efeitos dos fármacos , Klebsiella/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Suínos
2.
Amino Acids ; 43(1): 233-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21928075

RESUMO

We recently reported that bacteria from the pig small intestine rapidly utilize and metabolize amino acids (AA). This study investigated the effect of L-arginine on the utilization of AA by pure bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the pig small intestine. Bacteria were incubated at 37°C for 3 h in anaerobic AA media containing 0-5 mmol/L of arginine to determine the effect of arginine on the bacterial utilization of AA. Amino acids in the medium plus cell extracts were analyzed by high-performance liquid chromatography. Results indicated concentration-dependent increases in the bacterial utilization of arginine and altered fluxes of arginine into ornithine and citrulline in the bacteria. Net glutamine utilization increased in pure bacterial strains with increased concentrations of arginine. With the addition of arginine, net utilization of threonine, glycine, phenylalanine and branched-chain AA increased (P<0.05) in Streptococcus sp. and Klebsiella sp., but decreased in E. coli. Net utilization of lysine, threonine, isoleucine, leucine, glycine and alanine by jejunal or ileal mixed bacteria decreased (P<0.05) with the addition of arginine. Complete utilization of asparagine, aspartate and serine were observed in pig small-intestinal bacteria after 3 h of incubation. Overall, the addition of arginine affected the metabolism of the arginine-family of AA and the serine- and aspartate-family of AA in small-intestinal bacteria and reduced the utilization of most AA in ileal mixed bacteria. These novel findings indicate that arginine exerts its beneficial effects on swine nutrition partially by regulating AA utilization and metabolism in the small-intestinal microbiota.


Assuntos
Aminoácidos/metabolismo , Arginina/metabolismo , Escherichia coli/metabolismo , Intestino Delgado/microbiologia , Klebsiella/metabolismo , Streptococcus/metabolismo , Animais , Meios de Cultura/metabolismo , Suínos
3.
Amino Acids ; 42(5): 1597-608, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21344175

RESUMO

This study investigated the metabolism of select amino acids (AA) in bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the jejunum and ileum of pigs. Cells were incubated at 37°C for 3 h in anaerobic media containing 0.5-5 mM select AA plus [U-14C]-labeled tracers to determine their decarboxylation and incorporation into bacterial protein. Results showed that all types of bacteria rapidly utilized glutamine, lysine, arginine and threonine. However, rates of the utilization of AA by pure cultures of E. coli and Klebsiella sp. were greater than those for mixed bacterial cultures or Streptococcus sp. The oxidation of lysine, threonine and arginine accounted for 10% of their utilization in these pure bacterial cultures, but values were either higher or lower in mixed bacterial cultures depending on AA, bacterial species and the gut segment (e.g., 15% for lysine in jejunal and ileal mixed bacteria; 5.5 and 0.3% for threonine in jejunal mixed bacteria and ileal mixed bacteria, respectively; and 20% for arginine in ileal mixed bacteria). Percentages of AA used for bacterial protein synthesis were 50-70% for leucine, 25% for threonine, proline and methionine, 15% for lysine and arginine and 10% for glutamine. These results indicate diverse metabolism of AA in small-intestinal bacteria in a species- and gut compartment-dependent manner. This diversity may contribute to AA homeostasis in the gut. The findings have important implications for both animal and human nutrition, as well as their health and well-beings.


Assuntos
Bactérias/metabolismo , Intestino Delgado/metabolismo , Animais , Arginina/metabolismo , Digestão , Humanos , Intestino Delgado/microbiologia , Leucina/metabolismo , Lisina/metabolismo , Metionina/metabolismo , Prolina/metabolismo , Suínos , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...