Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(5): 1187-1193, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35084200

RESUMO

Two-dimensional (2D) halide perovskites have attracted extensive interest because of their excellent optoelectronic properties, structural diversity, and promising stability. Herein, we grow a novel 2D Dion-Jacobson halide perovskite, (BDA)CsPb2Br7 (BDA = 1,4-butanediamine, NH3C4H8NH32+), which exhibits a large bandgap (∼2.76 eV), high resistivity (∼4.35 × 1010 Ω·cm), and considerable switching ratio (>700), indicating great potential for radiation detection. Both experimental and calculated results demonstrate that (BDA)CsPb2Br7 has a significantly improved mobility compared to those of Ruddlesden-Popper perovskites (BA)2CsPb2Br7 and (i-BA)2CsPb2Br7, which is attributed to the shorter interlayer distance leading to the enhanced orbital interactions. The resulting (BDA)CsPb2Br7 detector along the out-of-plane direction achieves a high X-ray sensitivity of 725.5 µC·Gy-1·cm-2. Another fascinating attribute is that the detector exhibits good peak discrimination with an energy resolution of ∼37% when illuminated by the 241Am@5.48 MeV α-particles under a negative bias of 260 V. These results provide a broad prospect for 2D Dion-Jacobson perovskites for future radiation detection applications.

2.
Rev Sci Instrum ; 91(8): 086102, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872915

RESUMO

This Note presents a kind of paired double parallelogram (DP) flexure mechanism clamped by a sinusoidal corrugated beam to solve the problem of underconstraint of its secondary stages. The results show that the proposed mechanism effectively constrains the undesired motions of the secondary stages without changing the stiffness and the first-order natural frequency in the working direction. The second- and third-order natural frequencies of the mechanism are increased by 9.2% and 30.8%, respectively, which can effectively improve the dynamic characteristics of the DP mechanism.

3.
Sensors (Basel) ; 20(7)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260424

RESUMO

The effect of deep-level defects is a key issue for the applications of CdZnTe high-flux photon counting devices of X-ray irradiations. However, the major trap energy levels and their quantitive relationship with the device's performance are not yet clearly understood. In this study, a 16-pixel CdZnTe X-ray photon counting detector with a non-uniform counting performance is investigated. The deep-level defect characteristics of each pixel region are analyzed by the current-voltage curves (I-V), infrared (IR) optical microscope photography, photoluminescence (PL) and thermally stimulated current (TSC) measurements, which indicate that the difference in counting performance is caused by the non-uniformly distributed deep-level defects in the CdZnTe crystals. Based on these results, we conclude that the CdZnTe detectors with a good photon counting performance should have a larger Te cd 2 + and Cd vacancy-related defect concentration and a lower A-center and Tei concentration. We consider the deep hole trap Tei, with the activation energy of 0.638-0.642 eV, to be the key deep-level trap affecting the photon counting performance. In addition, a theoretical model of the native defect reaction is proposed to understand the underlying relationships of resistivity, deep-level defect characteristics and photon counting performance.

4.
Sensors (Basel) ; 20(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936657

RESUMO

Counting rate is an important factor for CdZnTe photon counting detectors as high-flux devices. Until recently, there has been a lack of knowledge on the relationship between X-ray photocurrent response and the photon counting performance of CdZnTe detectors. In this paper, the performance of linear array 1 × 16-pixel CdZnTe photon counting detectors operated under different applied biases is investigated. The relation between experimental critical flux and applied bias show an approximate quadratic dependence, which agrees well the theoretical prediction. The underlying relationship among X-ray photocurrents, carrier transport properties, and photon counting performance was obtained by analyzing X-ray current-voltage and time current curves. The typical X-ray photocurrent curve can be divided into three regions, which may be explained by the photoconductive gain mechanism and electric field distortion characteristics. To keep CdZnTe photon counting detectors working in a "non-polarized state", the applied bias should be set on the left side of the "valley region" (high bias direction) in the X-ray I-V curves. This provides an effective measurement for determining the proper working bias of CdZnTe detectors and screening photon counting detector crystals.

5.
Micron ; 88: 54-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27399802

RESUMO

The influence of damage induced by 2MeV protons on CdZnTe radiation detectors is investigated using ion beam induced charge (IBIC) microscopy. Charge collection efficiency (CCE) in irradiated region is found to be degraded above a fluence of 3.3×10(11)p/cm(2) and the energy spectrum is severely deteriorated with increasing fluence. Moreover, CCE maps obtained under the applied biases from 50V to 400V suggests that local radiation damage results in significant degradation of CCE uniformity, especially under low bias, i. e., 50V and 100V. The CCE nonuniformity induced by local radiation damage, however, can be greatly improved by increasing the detector applied bias. This bias-dependent effect of 2MeV proton-induced radiation damage in CdZnTe detectors is attributed to the interaction of electron cloud and radiation-induced displacement defects.

6.
Micron ; 88: 48-53, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27376976

RESUMO

To understand the effects of tellurium (Te) inclusions on the device performance of CdZnTe radiation detectors, the perturbation of the electrical field in and around Te inclusions was studied in CdZnTe single crystals via Kelvin probe force microscopy (KPFM). Te inclusions were proved to act as lower potential centers with respect to surrounding CdZnTe matrix. Based on the KPFM results, the energy band diagram at the Te/CdZnTe interface was established, and the bias-dependent effects of Te inclusion on carrier transportation is discussed.

7.
Phys Chem Chem Phys ; 18(7): 5658, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26815537

RESUMO

Correction for 'Effects of Ga-Te interface layer on the potential barrier height of CdTe/GaAs heterointerface' by Shouzhi Xi et al., Phys. Chem. Chem. Phys., 2016, 18, 2639-2645.

8.
Phys Chem Chem Phys ; 18(4): 2639-45, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26699197

RESUMO

The interface layer has great significance on the potential barrier height of the CdTe/GaAs heterointerface. In this study, the electronic properties of the CdTe/GaAs heterostructure prepared by molecular beam epitaxy was investigated in situ by synchrotron radiation photoemission spectroscopy for CdTe thicknesses ranging from 3.5 to 74.6 Å. During CdTe deposition, an As-Te and Ga-Te interface reaction occurred, which caused the out diffusion of Ga. As a result a stable GaTe interface dipole layer (more than 30 Å) was formed, which reduced the potential barrier height by 0.38 eV. The potential barrier height was in proportion to the chemical bonding density and thickness of the Ga-Te interface layer. These results provide a more fundamental understanding of the influencing mechanism of the interface layer on the potential barrier height of the CdTe/GaAs heterointerface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...