Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 473: 134656, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776817

RESUMO

Stabilized heavy metals-containing phases and low chlorine utilization limit heavy metals chlorination reactions. The traditional method of adding chlorinating agents can promote heavy metals chlorination volatilization, but the limiting factor has not been resolved and more chlorides are emitted. Herein, a new reaction pathway to promote heavy metals chlorination volatilization through the transformation of stabilized heavy metals-containing phases and chlorine species by the addition of biomass at the sintering is first reported. The Cu volatilization efficiency increased sharply from 50.50% to 93.21% compared with the control, Zn, Pb, and Cd were nearly completely volatilized. Results show that the biomass carbonization process was more important for Cu chlorination volatilization. Stabilized heavy metals-containing phases were converted from Cu2S to CuO and Cu2O with the biochar and oxygen, increasing the activity of Cu. The chlorine species KCl reacted with CH3-containing groups to form CH3Cl, which reacted with CuO with a lower Delta G than HCl and Cl2, increasing the tendency for the conversion of CuO to CuCl. Cu chlorination volatilization process, following shrinking core kinetic model and controlled by chemical reactions. The outcomes fundamentally addresses the limiting step for heavy metals chlorination volatilization, supporting the incineration fly ash harmless treatment.

2.
J Hazard Mater ; 425: 128037, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34906873

RESUMO

High contents of heavy metals and Cl are major challenges for incineration residue disposal. Classification by the Chinese government and the coronavirus disease 2019 pandemic have changed the characteristics of incineration residues, thereby increasing the difficulty of disposal. In this study, medical waste incineration fly ash (MWI FA) was proposed as an additive to promote chlorination volatilization of heavy metals from municipal solid waste incineration fly ash (MSWI FA) and medical waste incineration slag (MWI S). When the mixing ratio of MWI FA to MSWI FA was 1:3, the chlorination volatilization efficiencies of Cu, Zn, Pb, and Cd at 1000 °C for 60 min were 50.2%, 99.4%, 99.7%, and 97.9%, respectively. When MWI FA was mixed with MWI S at a ratio of 1:1, the chlorination volatilization efficiencies of Cu, Zn, Pb, and Cd at 1200 °C for 40 min were 88.9%, 99.7%, 97.3%, and 100%, respectively. Adding MWI FA can replenish Cl in MSWI FA and MWI S while increasing the surface area and forming pore structures by sublimation of NaCl and decomposition of CaSO4, or can reduce the melting point and viscosity by Na2O destroying the glass matrix. Therefore, MWI FA can be co-disposed with MSWI FA and MWI S respectively to enhance the chlorination volatilization of heavy metals.


Assuntos
COVID-19 , Resíduos de Serviços de Saúde , Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão , Halogenação , Humanos , Incineração , Metais Pesados/análise , Material Particulado , SARS-CoV-2 , Resíduos Sólidos , Volatilização
3.
J Hazard Mater ; 408: 124464, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33191020

RESUMO

Arsenic was one of toxic element in industrial wastewater. Removal of arsenic has always been a hot research topic in academia. Herein, arsenic (As(Ⅲ)) in industrial wastewater was removed by ultrasonic enhanced zero-valent lead combined with copper sulfate (CuSO4). Secondary pollution would not be caused by the addition of zero-valent lead and copper sulfate. Parameters, such as Pb/As molar ratio, the amount of CuSO4 added, reaction temperature, ultrasonic power and reaction time were investigated in this study. It was concluded that the removal of arsenic could be described by an unreacted shrinking nuclear model with activation energy 1.857 kJ/mol. The process of ultrasonic enhanced zero-valent lead combined with CuSO4 to remove arsenic was a diffusion controlled process. The precipitation after arsenic removal was characterized by XRD, SEM-EDS, XRF, and XPS to analyze the precipitated phases, topography, element content and different valence state of element. Based on the above analysis, the thermodynamic data and changes in ion concentration, the mechanism of efficient removal of arsenic (As(Ⅲ)) from industrial wastewater by ultrasonic enhanced zero-valent lead combined with CuSO4 was revealed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...