Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Fish Shellfish Immunol ; 151: 109689, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866349

RESUMO

Succinate dehydrogenase (SDH) is a crucial enzyme in the tricarboxylic acid cycle (TCA) and has established roles in immune function. However, the understanding of SDH in Penaeus vannamei, particularly its involvement in immune responses, is currently limited. Through affinity proteomics, a potential interaction between hemocyanin (HMC) and SDH in shrimp has been identified. The successful cloning of PvSDH in this study has revealed a high degree of evolutionary conservation. Additionally, it has been found that hemocyanin regulates SDH not only at the transcriptional and enzymatic levels but also through confirmed protein-protein interactions observed via Co-immunoprecipitation (CoIP) assay. Moreover, by combining PvHMC knockdown and Vibrio parahaemolyticus challenge, it was demonstrated that fumaric acid, a product of SDH, enhances the host's immune resistance to pathogen infection by modulating the expression of antimicrobial peptides. This research provides new insights into HMC as a crucial regulator of SDH, potentially impacting glycometabolism and the dynamics of immune responses.

2.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731557

RESUMO

The supramolecular solvent (SUPRAS) has garnered significant attention as an innovative, efficient, and environmentally friendly solvent for the effective extraction and separation of bioactive compounds from natural resources. However, research on the use of a SUPRAS for the extraction of phenolic compounds from plants, which are highly valued in food products due to their exceptional antioxidant properties, remains scarce. The present study developed a green, ultra-sound-assisted SUPRAS method for the simultaneous determination of three phenolic acids in Prunella vulgaris using high-performance liquid chromatography (HPLC). The experimental parameters were meticulously optimized. The efficiency and antioxidant properties of the phenolic compounds obtained using different extraction methods were also compared. Under optimal conditions, the extraction efficiency of the SUPRAS, prepared with octanoic acid reverse micelles dispersed in ethanol-water, significantly exceeded that of conventional organic solvents. Moreover, the SUPRAS method demonstrated greater antioxidant capacity. Confocal laser scanning microscopy (CLSM) images revealed the spherical droplet structure of the SUPRAS, characterized by a well-defined circular fluorescence position, which coincided with the position of the phenolic acids. The phenolic acids were encapsulated within the SUPRAS droplets, indicating their efficient extraction capacity. Furthermore, molecular dynamics simulations combined with CLSM supported the proposed method's mechanism and theoretically demonstrated the superior extraction performance of the SUPRAS. In contrast to conventional methods, the higher extraction efficiency of the SUPRAS can be attributed to the larger solvent contact surface area, the formation of more types of hydrogen bonds between the extractants and the supramolecular solvents, and stronger, more stable interaction forces. The results of the theoretical studies corroborate the experimental outcomes.


Assuntos
Antioxidantes , Fenóis , Extratos Vegetais , Solventes , Solventes/química , Fenóis/química , Fenóis/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Química Verde , Simulação de Dinâmica Molecular , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação
3.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2734-2744, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812174

RESUMO

Prunella vulgaris, aptly named for its withering at the summer solstice, displays significant variation in quality arising from differing harvest time. However, research on the chemical composition changes of its spikes at various stages is limited, and the specific metabolites remain unclear. In order to elucidate the metabolites and metabolic pathways of the spikes of P. vulgaris, the current study deployed ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) and targeted metabolomics to characterize the compound variability in the spikes of P. vulgaris across different periods. Multivariate statistical techniques such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differences in metabolites, and relevant metabolic pathways were analyzed. A total of 602 metabolites were identified by metabolomics, of which organic acids and their derivatives were the most abundant, followed by flavonoids. Multiple differential metabolites, including p-hydroxybenzoic acids and gallic acids were identified based on variable importance in projection(VIP)>1 and P<0.05. The results of enrichment analysis suggested that isoflavonoids biosynthesis, aminobenzoate degradation, benzoate degradation, anthocyanins biosynthesis, metabolic pathways, microbial metabolism in different environments, secondary plant metabolite biosynthesis, tryptophan metabolism, and phenylpropanoid synthesis were the main metabolic pathways. These results intend to elucidate the dynamic changes of differential metabolites of P. vulgaris and provide a theoretical basis for further study of the harvesting mechanism of spikes of P. vulgaris.


Assuntos
Metabolômica , Prunella , Espectrometria de Massas em Tandem , Prunella/química , Prunella/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Metabolômica/métodos , Espectrometria de Massa com Cromatografia Líquida
4.
Heliyon ; 10(7): e28458, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601543

RESUMO

In managing unique complexities associated with Chinese medicinal quality assessment, metabolomics serves as an innovative tool. This study proposes an analytical approach to assess differing qualities of Scrophularia ningpoensis (S. ningpoensis)Hemsl by identifying potential biomarker metabolites and their activity with the corresponding secondary metabolites. The methodology includes four steps; first, a GC-MS based metabolomics exploration of the Scrophularia ningpoensis Hemsl. Second, a multivariate statistical analysis (PCA, PLS-DA, OPLS-DA) for quality assessment and biomarker identification. Third, the application of ROC analysis and pathway analysis based on identified biomarkers. Finally, validation of the associated active ingredients by HPLC. The analysis showed distinct metabolite profiles across varying grades of S. ningpoensis Hemsl, establishing a grading dependency relationship. Select biomarkers (gluconic Acid, d-xylulose, sucrose, etc.) demonstrated robust grading performances. Further, the Pentose Phosphate Pathway, deemed as most influential in grading, was tied to the synthesis of key constituents (iridoids, phenylpropanoids). HPLC validation tests affirm a decreasing trend in harpagoside and cinnamic acid levels between first and third-grade samples. In conclusion, this GC-MS based metabolomics combined HPLC method offers a sound approach to assess and distinguish quality variations in S. ningpoensis Hemsl samples.

5.
J Ethnopharmacol ; 328: 117998, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484956

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to ancient literature, Prunella vulgaris L. (P vulgaris) alleviates mastitis and has been used in China for many years; however, there are no relevant reports that confirm this or the mechanism of its efficacy. AIM OF THE STUDY: To explore the anti-acute mastitis effect and potential mechanism of P vulgaris extract. MATERIALS AND METHODS: First, the active ingredients and targets of P vulgaris against mastitis were predicted using network pharmacology. Next, the relevant active ingredients were enriched using macroporous resins and verified using UV and UPLC-Q-TOF-MS/MS. Lastly, a mouse model of acute mastitis was established by injecting lipopolysaccharides into the mammary gland and administering P vulgaris extract by oral gavage. The pathological changes in mammary tissue were observed by HE staining. Serum and tissue inflammatory factors were measured by ELISA method. MPO activity in mammary tissue was measured using colorimetry and MPO expression was detected by immunohistochemistry. The expression of tight junction proteins (ZO-1, claudin-3, and occludin) in mammary tissue was detected by immunofluorescence and Western blot. iNOS and COX-2 in mammary tissue were detected by Western blot. MAPK pathway and NF-κB pathway related proteins were also detected by Western blot. RESULTS: Network pharmacology predicted that phenolic acids and flavonoids in P vulgaris had anti-mastitis effects. The contents of total flavonoids and total phenolic acids in P vulgaris extract were 64.5% and 29.4%, respectively. UPLC-Q-TOF-MS/MS confirmed that P vulgaris extract contained phenolic acids and flavonoids. The results of animal experiments showed that P vulgaris extract reduced lipopolysaccharide-induced inflammatory edema, inflammatory cell infiltration, and interstitial congestion of mammary tissue. It also reduced the levels of serum and tissue inflammatory factors TNF-α, IL-6, and IL-1ß, and inhibited the activation of MPO. Furthermore, it downregulated the expression of MAPK and NF-κB pathway-related proteins. The expressions of ZO-1, occludin, and claudin-3 in mammary gland tissues were upregulated. CONCLUSIONS: P vulgaris extract can maintain the integrity of mammary connective tissue and reduce its inflammatory response to prevent acute mastitis. Its mechanism probably involves regulating NF-κB and MAPK pathways.


Assuntos
Mastite , Prunella , Humanos , Animais , Feminino , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Transdução de Sinais , Leite/metabolismo , Ocludina/metabolismo , Claudina-3/metabolismo , Espectrometria de Massas em Tandem , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Mastite/metabolismo , Flavonoides/farmacologia
6.
Int J Biol Macromol ; 258(Pt 2): 128873, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141704

RESUMO

Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.


Assuntos
Diabetes Mellitus , Plantas Medicinais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Plantas Comestíveis , Fosfatidilinositol 3-Quinases/metabolismo , Plantas Medicinais/química , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/farmacologia , Polissacarídeos/química
7.
J Cell Mol Med ; 27(19): 2945-2955, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37494130

RESUMO

Prolonged exposure of the peritoneum to high glucose dialysate leads to the development of peritoneal fibrosis (PF), and apoptosis of peritoneal mesothelial cells (PMCs) is a major cause of PF. The aim of this study is to investigate whether Astragaloside IV could protect PMCs from apoptosis and alleviate PF. PMCs and rats PF models were induced by high glucose peritoneal fluid. We examined the pathology of rat peritoneal tissue by HE staining, the thickness of rat peritoneal tissue by Masson's staining, the number of mitochondria and oxidative stress levels in peritoneal tissue by JC-1 and DHE fluorescence staining, and mitochondria-related proteins and apoptosis-related proteins such as PGC-1α, NRF1, TFAM, Caspase3, Bcl2 smad2 were measured. We used hoechst staining and flow cytometry to assess the apoptotic rate of PMCs in the PF model, and further validated the observed changes in the expressions of PGC-1α, NRF1, TFAM, Caspase3, Bcl2 smad2 in PMCs. We further incubated PMCs with MG-132 (proteasome inhibitor) and Cyclohexylamine (protein synthesis inhibitor). The results demonstrated that Astragaloside IV increased the expression of PGC-1α by reducing the ubiquitination of PGC-1α. It was further found that the protective effects of Astragaloside IV on PMCs were blocked when PGC-1α was inhibited. In conclusion, Astragaloside IV effectively alleviated PF both in vitro and in vivo, possibly by promoting PGC-1α to enhance mitochondrial synthesis to reduce apoptotic effects.


Assuntos
Fibrose Peritoneal , Ratos , Animais , Fibrose Peritoneal/patologia , Peritônio/patologia , Apoptose , Glucose/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
8.
Phytochemistry ; 213: 113731, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37245687

RESUMO

The genus Polygonatum Mill. belongs to the Liliaceae family, which is widely distributed all over the world. Modern studies have found that Polygonatum plants are very rich in chemical compounds such as saponins, polysaccharides and flavonoids. Steroidal saponins are the most commonly studied saponins in the genus Polygonatum and a total of 156 compounds have been isolated from 10 species of the genus. These molecules possess antitumor, immunoregulatory, anti-inflammatory, antibacterial, antiviral, hypoglycemic, lipid-lowering and anti-osteoporotic activities. In this review, we summarize recent advances in studies of the chemical constituents of steroidal saponins from Polygonatum, including their structural characteristics, possible biosynthetic pathways and pharmacological effects. Then, the relationship between the structure and some physiological activities is considered. This review aims to provide reference for further exploitation and utilization of the genus Polygonatum.


Assuntos
Vias Biossintéticas , Polygonatum , Saponinas , Esteroides , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Hipoglicemiantes/farmacologia , Polygonatum/química , Polygonatum/metabolismo , Saponinas/biossíntese , Saponinas/química , Saponinas/classificação , Saponinas/isolamento & purificação , Saponinas/farmacologia , Esteroides/biossíntese , Esteroides/química , Esteroides/classificação , Esteroides/isolamento & purificação , Esteroides/farmacologia , Relação Estrutura-Atividade , Humanos , Animais
9.
Chem Biodivers ; 19(11): e202200459, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36328758

RESUMO

Turpiniae Folium, the dried leaves of Turpinia arguta Seem., is a kind of historic traditional Chinese medicine. Here, based on our previous study, we extracted the Turpiniae Folium polysaccharides (TFP) and isolated three polysaccharide fractions from TFP. Then, TFP and one of the major polysaccharide fractions (TFP-1a) were identified through HPLC, HPGPC, and ATR-FTIR. Furthermore, the evaluations of their antioxidative, anti-inflammatory activities and inhibitory effect on angiotensin II-induced vascular smooth muscle cells (VSCMs) proliferation in vitro were conducted. Both TFP and TFP-1a showed strong hydroxyl radical scavenging, DPPH radical scavenging, and Fe2+ chelating activities, and exerted strong anti-inflammatory activity. Moreover, TFP and TFP-1a also possessed a strong inhibitory effect on Ang II-induced VSCMs proliferation. On these premises, we inferred that TFP and TFP-1a could be potential and promising natural antioxidants, anti-inflammatory agents, and implicated to treat cardiovascular disease.


Assuntos
Antioxidantes , Músculo Liso Vascular , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Folhas de Planta
10.
Heliyon ; 8(11): e11183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36345524

RESUMO

Prunella vulgaris L.(P. vulgaris) is a perennial herb belonging to the Labiate family and widely distributed in China, Japan, Korea and Europe. Medical monographs and previous studies have shown that P. vulgaris has significant anti-breast cancer activity, and its use in breast treatment has a long history. However, systematically reports about the material basis and mechanism of P. vulgaris on anti-breast cancer activity are limited. In the present study, we first screened the best active fraction from the crude extract (PVE) and ethanol eluted fractions of P. vulgaris by using MDA-MB-231, MCF-7, 4T1 cell models in vitro and a 4T1-BALB/c transplanted tumour mouse breast cancer model in vivo. Furthermore, the anti-breast cancer mechanism of the best active fraction was investigated. The results demonstrated that PVE and ethanol fractions exhibited anti-breast cancer activity, especially with the 50% ethanol eluted fraction (PV50), which effectively regulated the 4T1 cell cycle, inhibited tumour cell proliferation, and promoted cancer cell apoptosis. In case of in vivo assays, PV50 inhibited tumour growth and lung metastasis, as well as inducing cell apoptosis by promoting damage of nuclear DNA and increasing expression of cleaved caspase-3. In addition, the chemical compositions of PV50 were analyzed by HPLC and UPLC-MS/MS, which were identified as flavonoids, moderately polar triterpenes, and a small amount of phenolic acid. The PV50 could be applied as natural sources against breast cancer in the pharmaceutical industry. These findings provide a basis for understanding the mechanism of the anti-breast cancer activity of P. vulgaris.

11.
Fitoterapia ; 163: 105334, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36272703

RESUMO

Prunella vulgaris L. (P. vulgaris, Labiatae) is a perennial medicinal and edible plant widely used in China, Korea, Japan and Europe. The reddish brown spica of P. vulgaris (Prunellae Spica), which is collected in summer, has been commonly used in traditional medicine and food industry, while it is also used with whole grass in Europe and Taiwan. To clarify the regulatory pathways and mechanism of quality formation in P. vulgaris, targeted metabolomic, transcriptomic, and proteomic analyses of Prunellae Spica samples from five consecutive developmental stages were carried out. The results showed that terpenoids were mainly synthesized in the maturity stage of Prunellae Spica, with the key enzymes and coding genes in downstream pathways being mainly expressed during ripening, while related enzymes in the upstream pathway showed the opposite pattern. Flavonoids mainly accumulated before ripening, with highly expressed pathway enzymes and coding genes. The accumulation of phenylpropanoids was relatively active throughout the development process. Rosmarinic acid (RA) and its synthetic intermediate products mainly accumulated via more active pathway enzymes and coding genes before ripening. The regulatory factors and metabolites related to RA synthesis were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, plant pathogen interaction, oxidative phosphorylation, and endoplasmic reticulum protein processing pathways.


Assuntos
Prunella , Prunella/metabolismo , Proteômica , Metabolismo Secundário , Transcriptoma , Estrutura Molecular , Ácido Rosmarínico
12.
Front Pharmacol ; 13: 960140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304153

RESUMO

In recent years, small intestine as a key target in the treatment of Inflammatory bowel disease caused by NSAIDs has become a hot topic. Sanguinarine (SA) is one of the main alkaloids in the Macleaya cordata extracts with strong pharmacological activity of anti-tumor, anti-inflammation and anti-oxidant. SA is reported to inhibit acetic acid-induced colitis, but it is unknown whether SA can relieve NSAIDs-induced small intestinal inflammation. Herein, we report that SA effectively reversed the inflammatory lesions induced by indomethacin (Indo) in rat small intestine and IEC-6 cells in culture. Our results showed that SA significantly relieved the symptoms and reversed the inflammatory lesions of Indo as shown in alleviation of inflammation and improvement of colon macroscopic damage index (CMDI) and tissue damage index (TDI) scores. SA decreased the levels of TNF-α, IL-6, IL-1ß, MDA and LDH in small intestinal tissues and IEC-6 cells, but increased SOD activity and ZO-1 expression. Mechanistically, SA dose-dependently promoted the expression of Nrf2 and HO-1 by decreasing Keap-1 level, but inhibited p65 phosphorylation and nuclear translocation in Indo-treated rat small intestine and IEC-6 cells. Furthermore, in SA treated cells, the colocalization between p-p65 and CBP in the nucleus was decreased, while the colocalization between Nrf2 and CBP was increased, leading to the movement of gene expression in the nucleus to the direction of anti-inflammation and anti-oxidation. Nrf2 silencing blocked the effects of SA. Together our results suggest that SA can significantly prevent intestinal inflammatory lesions induced by Indo in rats and IEC-6 cells through regulation of the Nrf2 pathway and NF-κBp65 pathway.

13.
Molecules ; 27(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35889512

RESUMO

LJF and LF are commonly used in Chinese patent drugs. In the Chinese Pharmacopoeia, LJF and LF once belonged to the same source. However, since 2005, the two species have been listed separately. Therefore, they are often misused, and medicinal materials are indiscriminately put in their related prescriptions in China. In this work, firstly, we established a model for discriminating LJF and LF using ATR-FTIR combined with multivariate statistical analysis. The spectra data were further preprocessed and combined with spectral filter transformations and normalization methods. These pretreated data were used to establish pattern recognition models with PLS-DA, RF, and SVM. Results demonstrated that the RF model was the optimal model, and the overall classification accuracy for LJF and LF samples reached 98.86%. Then, the established model was applied in the discrimination of their related prescriptions. Interestingly, the results show good accuracy and applicability. The RF model for discriminating the related prescriptions containing LJF or LF had an accuracy of 100%. Our results suggest that this method is a rapid and effective tool for the successful discrimination of LJF and LF and their related prescriptions.


Assuntos
Medicamentos de Ervas Chinesas , Lonicera , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Lonicera/química , Extratos Vegetais , Prescrições , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3798-3805, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850837

RESUMO

Lonicerae Japonicae Flos and Lonicerae Flos, as traditional Chinese medicinal and edible food, are widely used in medicine, food, health products, and other industries. However, there is no comprehensive study on the differences of flavor compounds in Lonicerae Japonicae Flos and Lonicerae Flos. This study applied headspace gas chromatography-ion mobility spectrometry(HS-GC-IMS) to analyze the differences of flavor compounds in Lonicerae Japonicae Flos and Lonicerae Flos. The differential biomarkers were confirmed by multivariate statistical analysis. The results showed that there were significant differences in the forty-seven flavor compounds in Lonicerae Japonicae Flos and Lonicerae Flos. The differential markers were ethyl acetate, propyl alcohol, 1-octanol, 1-hexanol, hexanal, and(Z)-2-hexen-1-ol. Pathway enrichment analysis showed that the above markers were involved in the biosynthesis of major secondary metabolism, sulfate metabolism pathways, and formation of other flavor compounds. This study provides important references for the evaluation of flavor compounds of Lonicerae Japonicae Flos and Lonicerae Flos and the development of medicinal and edible products.


Assuntos
Medicamentos de Ervas Chinesas , Lonicera , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Cromatografia Gasosa-Espectrometria de Massas , Lonicera/química , Extratos Vegetais , Análise Espectral
15.
Int J Anal Chem ; 2022: 8850914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295923

RESUMO

Lonicera japonica Thunb is a commonly used Chinese herbal medicine, which belongs to the family Caprifoliaceae. The active components varied greatly during bud development. Research on the variation of the main active components is significant for the timely harvesting and quality control of Lonicera japonica. In this study, the attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) combined with the chemometric method was performed to investigate the variability of different harvesting periods of Lonicera japonica. The preliminary characterization from ATR-FTIR fingerprints showed various characteristic absorption peaks of the main active components from the different harvesting times, such as flavonoids, organic acids, iridoids, and volatile oils. Additionally, principal component analysis (PCA) scatter plots showed that there was a clear clustering trend in the samples of the same harvesting period, and the samples of the different harvesting periods could be well distinguished. Finally, further analysis by the orthogonal partial least-squares discriminant analysis (OPLS-DA) showed that there were regular changes in flavonoids, phenolic acids, iridoids, and volatile oils in different harvesting periods. Therefore, ATR-FTIR, as a novel and convenient analytical method, could be applied to evaluate the quality of Lonicera japonica.

16.
J Pharm Biomed Anal ; 209: 114532, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34953415

RESUMO

Metabolomics is applied to explore the curative effect of complex systems, such as Chinese medicine. Intrauterine adhesion (IUA) harms the reproductive system and affects fertility, and hence is a significant public health concern. Prunella vulgaris oil (PVO) protects the reproductive system and exerts anti-inflammatory effects, but its effect on IUA and the underlying mechanism is unclear. In this study, we established a serum metabolomics method based on GC-TOF-MS to evaluate the mechanism of PVO in the IUA rat model established by mechanical injury and infection. Animal experiments showed that PVO improves the inflammatory response in the uterus of IUA model rats and reduces the content of inflammatory factors to improve the microenvironment of the reproductive system. It also regulates the expression of TGF-ß1 and Smad-related mRNA and protein to inhibit fibrosis. Metabolomics indicated a significant abnormality in serum metabolism in IUA rats, and a total of 51 differential markers were screened and identified. After PVO treatment, these metabolic abnormalities improved significantly. The metabolic pathway analysis revealed that PVO affects glyoxylate and dicarboxylate metabolism, and ß-alanine metabolism pathways. This study showed that PVO significantly improves inflammation and fibrosis in IUA rats combined with the pharmacological results. The primary mechanism is related to regulating the metabolism of amino acids and their derivatives to balance the associated disorders and control energy metabolism.


Assuntos
Prunella , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Inflamação , Metabolômica , Ratos
17.
Oxid Med Cell Longev ; 2021: 9180635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336118

RESUMO

Hyperlipidemia, a typical metabolic disorder syndrome, can cause various cardiovascular diseases. The polysaccharides were found to have enormous potential in the therapy of hyperlipidemia. This study was aimed at evaluating the ameliorative effects of polysaccharide from Turpiniae folium (TFP) in rats with hyperlipidemia. A serum metabolomic method based on gas chromatography-mass spectrometry (GC-MS) was used to explore the detailed mechanism of TFP in rats with hyperlipidemia. The oxidative stress indicators, biochemical indexes, and inflammatory factors in serum and histopathological changes in the liver were also evaluated after 10-week oral administration of TFP in rats with high-fat diet-induced hyperlipidemia. TFP significantly relieved oxidative stress, inflammation, and liver histopathology and reduced blood lipid levels. Multivariate statistical approaches such as principal component analysis and orthogonal projection to latent structure square-discriminant analysis revealed clear separations of metabolic profiles among the control, HFD, and HFD+TFP groups, indicating a moderating effect of TFP on the metabolic disorders in rats with hyperlipidemia. Seven metabolites in serum, involved in glycine, serine, and threonine metabolism and aminoacyl-tRNA biosynthesis, were selected as potential biomarkers in rats with hyperlipidemia and regulated by TFP administration. It was concluded that TFP had remarkable potential for treating hyperlipidemia. These findings provided evidence for further understanding of the mechanism of action of TFP on hyperlipidemia.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hiperlipidemias/tratamento farmacológico , Metabolômica/métodos , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Polissacarídeos/uso terapêutico , Animais , Modelos Animais de Doenças , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Ratos , Ratos Sprague-Dawley
18.
J Ethnopharmacol ; 280: 114421, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34271114

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The idiosyncratic hepatotoxicity of Polygonum multiflorum Thunb. (PM) has attracted great interest, and tetrahydroxy stilbene glucoside (TSG) was the main idiosyncratic hepatotoxicity constituent, but biological detoxification on idiosyncratic hepatotoxicity of PM was not well investigated. AIM OF THE STUDY: This study aimed to illustrate biological detoxification mechanism on PM-induced idiosyncratic hepatotoxicity by Ganoderma lucidum (G. lucidum). MATERIALS AND METHODS: G. lucidum was used for biological detoxification of tetrahydroxy stilbene glucoside (TSG)-induced idiosyncratic hepatotoxicity of PM. The TSG consumption and products formation were dynamically determined during transformation using high-performance liquid chromatography coupled with diode-array detection and electrospray ionization tandem mass spectrometry (HPLC-DAD-MSn). The transformation invertases (ß-D-glucosidase and lignin peroxidase) were evaluated by using intracellular and extracellular distribution and activity assay. The key functions of lignin peroxidase (LiP) were studied by experiments of adding inhibitors and agonists. The entire TSG transformation process was confirmed in vitro simulated test. The cellular toxicity of TSG and the transformation products was detected by MTT. RESULTS: A suitable biotransformation system of TSG was established with G. lucidum, then p-hydroxybenzaldehyde and 2,3,5-trihydroxybenzaldehyde can be found as transformation products of TSG. The transformation mechanism involves two extracellular enzymes, ß-D-glucosidase and LiP. ß-D-glucosidase can remove glycosylation of TSG firstly and then LiP can break the double bond of remaining glycosides. The toxicity of TSG after biotransformation by G. lucidum was attenuated. CONCLUSIONS: This study would reveal a novel biological detoxification method for PM and explain degradation processes of TSG by enzymic methods.


Assuntos
Fallopia multiflora/química , Glucosídeos/metabolismo , Glucosídeos/toxicidade , Hepatócitos/efeitos dos fármacos , Reishi/enzimologia , Estilbenos/metabolismo , Estilbenos/toxicidade , Biotransformação , Linhagem Celular , Fermentação , Glucosídeos/química , Humanos , Peroxidases/metabolismo , Reishi/metabolismo , Estilbenos/química
19.
Environ Toxicol ; 36(9): 1802-1816, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34089294

RESUMO

Fluoride is considered as one of the most ubiquitous environmental pollutants. Numerous studies have linked reactive oxygen species (ROS)-dependent oxidative damage with fluoride intoxication, which could be prevented by antioxidants. However, the metabolomic changes induced by ROS disruptions in fluoride intoxication are yet unknown. The present study aimed to provide novel mechanistic insights into the fluoride-induced oxidative damage and to investigate the potential protective effects of ethanolic extract of Prunella vulgaris (natural antioxidant, PV) against fluoride-induced oxidative damage. The serum biochemical indicators related to fluoride-induced oxidative damage, such as lipid peroxidation parameter, inflammation and marker enzymes in the liver increased significantly in the fluoride-treated group, while antioxidant enzymes were decreased. However, PV treatment restored the level of these biochemical indicators, indicating satisfactory antioxidant, anti-inflammatory, and hepatoprotective potential of PV. The metabolomics analysis in the serum was performed by liquid chromatography-mass spectroscopy, whereas the fluoride treatment caused severe metabolic disorders in rats, which could be improved by PV. The differential metabolites screened by multivariate analysis after fluoride and PV treatment, were organic acids, fatty acids, and lipids. These differential metabolites represented disorders of glyoxylate and dicarboxylate metabolism and the citrate cycle (TCA) according to metabolic pathway analysis in fluoride treatment rats. Interestingly, the result of metabolic pathway analysis of post-treatment with PV was consistent with that of fluoride treatment, indicating that the energy metabolism plays a major role in the progress of fluoride-induced oxidative damage, as well as the therapeutic effect of PV. These findings provided a theoretical basis for understanding the mechanism underlying metabolic disorders of fluoride toxicity and the effect of PV.


Assuntos
Prunella , Animais , Antioxidantes , Fluoretos/toxicidade , Metabolômica , Estresse Oxidativo , Ratos
20.
Zhongguo Zhong Yao Za Zhi ; 46(7): 1813-1821, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33982486

RESUMO

Prunella vulgaris(PV) is an edible and traditional medicinal herb which has a wide range application in fighting inflammation and oxidative stress, and protecting liver. Now it has been used to treat various types of liver diseases and has significant clinical efficacy. This study aims to investigate the effects of PV on ethanol-induced oxidative stress injury in rats and its metabolic mechanism. The rats were divided into control group, model group, PV group, and VC group. The liver protection of PV was identified by measuring pharmacological indexes such as antioxidant and anti-inflammatory activity. The metabolic mechanism of long-term ethanol exposure and the metabolic regulation mechanism of PV treatment were studied by LS-MS metabonomics. The pharmacological investigation indicated that ethanol could significantly decrease the contents of SOD, GSH-Px, CAT and other antioxidant enzymes in liver and increase the content of MDA. At the same time, PV could significantly reduce the contents of inflammatory factors(TNF-α, IL-6 and IL-1ß) and liver function markers(ALT, AST, ALP) in serum. What's more, long-term ethanol exposure could significantly cause liver injury, while PV could protect liver. Metabolomics based on multiple statistical analyses showed that long-term ethanol exposure could cause significant metabolic disorder, and fatty acids, phospholipids, carnitines and sterols were the main biomarkers. Meanwhile, pathway analysis and enrichment analysis showed that the ß oxidation of branched fatty acids was the main influencing pathway. Also, PV could improve metabolic disorder of liver injury induced by ethanol, and amino acids, fatty acids, and phospholi-pids were the main biomarkers in PV treatment. Metabolic pathway analysis showed that PV mainly regulated metabolic disorder of ethanol-induced liver injury through phenylalanine, tyrosine and tryptophan biosynthetic pathways. This study could provide a new perspective on the hepatoprotective effect of natural medicines, such as PV.


Assuntos
Prunella , Animais , Antioxidantes/metabolismo , Etanol/toxicidade , Fígado/metabolismo , Metabolômica , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...