Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 3104, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248220

RESUMO

Improvement of chilling tolerance is a key strategy to face potential menace from abnormal temperature in rice production, which depends on the signaling network triggered by receptors. However, little is known about the QTL genes encoding membrane complexes for sensing cold. Here, Chilling-tolerance in Gengdao/japonica rice 1 (COG1) is isolated from a chromosome segment substitution line containing a QTL (qCS11-jap) for chilling sensitivity. The major gene COG1 is found to confer chilling tolerance in japonica rice. In natural rice populations, only the haplogroup1 encodes a functional COG1. Evolutionary analysis show that COG1 originates from Chinese O. Rufipogon and is fixed in japonica rice during domestication. COG1, a membrane-localized LRR-RLP, targets and activates the kinase OsSERL2 in a cold-induced manner, promoting chilling tolerance. Furthermore, the cold signal transmitted by COG1-OsSERL2 activates OsMAPK3 in the cytoplasm. Our findings reveal a cold-sensing complex, which mediates signaling network for the chilling defense in rice.


Assuntos
Oryza , Oryza/genética , Temperatura Baixa , Transdução de Sinais/genética
3.
BMC Plant Biol ; 23(1): 39, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36650465

RESUMO

Melon is an important horticultural crop with a pleasant aromatic flavor and abundance of health-promoting substances. Numerous melon varieties have been cultivated worldwide in recent years, but the high number of varieties and the high similarity between them poses a major challenge for variety evaluation, discrimination, as well as innovation in breeding. Recently, simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs), two robust molecular markers, have been utilized as a rapid and reliable method for variety identification. To elucidate the genetic structure and diversity of melon varieties, we screened out 136 perfect SSRs and 164 perfect SNPs from the resequencing data of 149 accessions, including the most representative lines worldwide. This study established the DNA fingerprint of 259 widely-cultivated melon varieties in China using Target-seq technology. All melon varieties were classified into five subgruops, including ssp. agrestis, ssp. melo, muskmelon and two subgroups of foreign individuals. Compared with ssp. melo, the ssp. agrestis varieties might be exposed to a high risk of genetic erosion due to their extremely narrow genetic background. Increasing the gene exchange between ssp. melo and ssp. agrestis is therefore necessary in the breeding procedure. In addition, analysis of the DNA fingerprints of the 259 melon varieties showed a good linear correlation (R2 = 0.9722) between the SSR genotyping and SNP genotyping methods in variety identification. The pedigree analysis based on the DNA fingerprint of 'Jingyu' and 'Jingmi' series melon varieties was consistent with their breeding history. Based on the SNP index analysis, ssp. agrestis had low gene exchange with ssp. melo in chromosome 4, 7, 10, 11and 12, two specific SNP loci were verified to distinguish ssp. agrestis and ssp. melon varieties. Finally, 23 SSRs and 40 SNPs were selected as the core sets of markers for application in variety identification, which could be efficiently applied to variety authentication, variety monitoring, as well as the protection of intellectual property rights in melon.


Assuntos
Cucurbitaceae , Cucurbitaceae/genética , Polimorfismo de Nucleotídeo Único/genética , Melhoramento Vegetal , Técnicas de Genotipagem/métodos , Impressões Digitais de DNA , Repetições de Microssatélites/genética , Variação Genética
4.
Plant Dis ; 107(4): 1210-1213, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36265141

RESUMO

Fusarium oxysporum f. sp. cucumerinum, which causes root and vascular wilting, is one of the most devastating diseases infecting cucumber. Here, we report the first genome resource with high-quality assembly for F. oxysporum f. sp. cucumerinum strain Race-4, which is primarily endemic to China. The genome was 59.11 Mb in size and consisted of 48 scaffolds with an N50 of 3.87 Mb using PacBio long reads (301.77×) sequencing, and encodes 14,898 proteins from analyzing RNA-seq data. Gene annotations identified pathogen-host interaction genes, fungal virulence factors, secreted proteins, transcription factors, and secondary metabolite biosynthesis gene. Moreover, functional genes reported in previous studies were also identified in the genome of Race-4. These genes and genome resource may play important roles in understanding F. oxysporum f. sp. cucumerinum-cucumber interactions and will be useful for further research.


Assuntos
Cucumis sativus , Fusarium , Cucumis sativus/microbiologia , Fusarium/genética , Fatores de Virulência , Interações Hospedeiro-Patógeno
5.
Plant Cell Environ ; 44(2): 491-505, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33150964

RESUMO

Improving chilling tolerance is a major target of rice breeding. The OsMAPK3-OsbHLH002-OsTPP1 signalling pathway enhances chilling tolerance in rice: the kinase is activated by cold stress, and subsequently the transcription factor is phosphorylated by the activated kinase, triggering the expression of cold response genes. However, it is largely unknown how this pathway is suppressed in time to avoid it being in a continuously activated state. We found that a novel type 2C protein phosphatase, OsPP2C27, functions as a negative regulator of the OsMAPK3-OsbHLH002-OsTPP1 pathway. A dynamic change in OsMAPK3 activity was found during cold treatment. We show that OsPP2C27 interacts physically with and dephosphorylates OsMAPK3 in vitro and in vivo. Interestingly, OsPP2C27 can also directly dephosphorylate OsbHLH002, the target of OsMAPK3. After cold treatment, survival rates were higher in OsPP2C27-RNAi lines and a T-DNA insertion mutant, and lower in OsPP2C27-overexpression lines, compared to wild type. Moreover, expression of the OsTPP1 and OsDREBs were increased in OsPP2C27-RNAi lines and decreased in OsPP2C27-overexpression lines. These results indicate that cold-induced OsPP2C27 negatively regulates the OsMAPK3-OsbHLH002-OsTPP1 signalling pathway by directly dephosphorylating both phospho-OsMAPK3 and phospho-OsbHLH002, preventing the sustained activation of a positive pathway for cold stress and maintaining normal growth under chilling conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Transpiração Vegetal , Transdução de Sinais , Temperatura Baixa , Oryza/anatomia & histologia , Oryza/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estresse Salino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...