Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(5): 1628-1638, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37584510

RESUMO

We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip-shaping after conventional annulus milling using gallium ions. This dual-ion approach combines the benefits of the faster milling capability of the higher current gallium ion beam with the chemically inert and higher precision milling capability of the noble gas neon ion beam. Using a titanium-aluminum alloy and a layered aluminum/aluminum-oxide tunnel junction sample as test cases, we show that atom probe tips prepared using the combined gallium and neon ion approach are free from the gallium contamination that typically frustrates composition analysis of these materials due to implantation, diffusion, and embrittlement effects. We propose that by using a focused ion beam from a noble gas species, such as the neon ions demonstrated here, atom probe tomography can be more reliably performed on a larger range of materials than is currently possible using conventional techniques.

2.
Nanotechnology ; 31(47): 475301, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32886649

RESUMO

Helium ion microscopy has attracted many applications in imaging, nanofabrication and analysis. One important field of study in nanofabrication using ion beam is the milling or etching of materials using a helium or neon focused ion beam (FIB), with and without chemical gas assistance. In particular, the neon FIB has a relatively high sputtering rate with a lower probability of swelling and less re-deposition issues compared to a helium FIB. Here, both neon and helium FIB etchings are investigated for milling and repairing electron-beam lithography (EBL) defined hydrogen silsesquioxane (HSQ) and polymethyl methacrylate (PMMA) resist patterns. Different dosages of neon FIB etching result in distinct etching profiles. Using the appropriate doses, arrays of uniform gap with aspect ratio more than 20 can be achieved on HSQ nanostructures. The neon FIB etching has a resolution of 20 nm on HSQ patterns. With XeF2 assistance, neon FIB etching can be enhanced for etching depth by a factor of ∼1.2. Whereas, helium FIB can also etch thick HSQ patterns, with much lower etch rates. But with XeF2 assistance, helium FIB etching depth can be enhanced significantly by a factor of around 5. Furthermore, both helium and neon FIB etching methods have been employed to selectively remove residual particles in deep and narrow trenches without affecting the resist patterns. The chemical analysis of these residual particle composition and resist patterns can be also performed using helium ion microscopy coupled with secondary ion mass spectrometry (SIMS) using neon FIB. Besides, a neon FIB can also effectively etch PMMA patterns which are commonly used in nanofabrication and the unwanted connections can be etched away.

3.
ACS Appl Mater Interfaces ; 11(5): 5509-5516, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30644713

RESUMO

As the dimensions of feature sizes in electronic devices decrease to nanoscale, an easy method for failure analysis and evaluation of processing steps is required. Gallium-focused ion beam (Ga-FIB) or scanning electron microscope is an efficient approach to detect voltage contrast for addressing failure analysis in semiconductor devices and processing. However, Ga-FIB may cause damage or implantation to the surface of the analyzed area, and its resolution is low. Helium ion microscopy (HIM) uses a light ion beam (helium or neon) for imaging and fabrication at nanoscale. With passive voltage contrast (PVC) in HIM images, the defect localization for failure of conductive structures can be rapidly and easily detected with a sufficient voltage contrast. Furthermore, a defect gap as narrow as sub-10 nm can be investigated with HIM imaging. PVC with HIM is an efficient method for defect localization at nanoscale with a minimal damage to the analyzed area. For circuit edit and failure analysis, it may be necessary to intentionally cut the conductive connection. In this circumstance, final results can be easily verified using PVC imaging with HIM. With XeF2 gas assistance, both helium and neon ion beams can be used to perform nanofabrication for metal disconnection. XeF2 gas plays an important role in preventing deposition of conductive materials on etching region and enhancing material removal rates to achieve electrically isolated structures. The etching rate with a neon ion beam is much faster than that of a helium ion beam. PVC in HIM images with controllable operation and dimensions using a helium ion beam with XeF2 gas assistance could also be used to localize a hidden defect for a single-location-defect situation. With neon ion beam irradiation on a defective location, PVC can be used to find the defect locations in the case of a series of defects.

4.
Nanoscale ; 10(11): 5198-5204, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29493685

RESUMO

The fabrication of solid-state nanopores in an insulating membrane has attracted much attention for biomolecule analysis such as DNA sequencing and detection in recent years. For practical applications and device integration, the challenges include precise size control for sub 10 nm nanopores, excellent repeatability and rapid fabrication over a large area to reduce the cost for mass production. A helium ion beam could provide an effective fabrication approach to produce such solid-state nanopores. It is easy to control the nanopore size and reach sub 10 nm pore size with a simple change in the milling time with an appropriate ion beam current. Here we report new results in a set of experiments demonstrating that with a small range of stage automatized motions and equal mill times one can obtain good fabrication reproducibility in nanopore sizes (<10% variation in size). The automation in the stage motion and milling time opens a door for the rapid mass production of nanopore chips over a wafer size of several inches.

5.
Small ; 8(18): 2787-801, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22778064

RESUMO

With the development of nanotechnology, great progress has been made in the fabrication of nanochannels. Nanofluidic biochips based on nanochannel structures allow biomolecule transport, bioseparation, and biodetection. The domain applications of nanofluidic biochips with nanochannels are DNA stretching and separation. In this Review, the general fabrication methods for nanochannel structures and their applications in DNA analysis are discussed. These representative fabrication approaches include conventional photolithography, interference lithography, electron-beam lithography, nanoimprint lithography and polymer nanochannels. Other nanofabrication methods used to fabricate unique nanochannels, including sub-10-nm nanochannels, single nanochannels, and vertical nanochannels, are also mentioned. These nanofabrication methods provide an effective way to form nanoscale channel structures for nanofluidics and biosensor devices for DNA separation, detection, and sensing. The broad applications of nanochannels and future perspectives are also discussed.


Assuntos
Técnicas Biossensoriais , DNA/análise , Técnicas Analíticas Microfluídicas/instrumentação , Nanoestruturas/química , DNA/química , Microscopia Eletrônica de Varredura
6.
Adv Mater ; 24(10): 1287-302, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22318857

RESUMO

This review article provides a brief summary of recent research progress on anisotropic wetting on one-dimensional (1D) and directionally patterned surfaces, as well as the technical importance in various applications. Inspiration from natural structures exhibiting anisotropic wetting behavior is first discussed. Development of fabrication techniques for topographically and chemically 1D patterned surfaces and directional nanomaterials are then reviewed, with emphasis on anisotropic behavior with topographically (structurally) patterned surfaces. The basic investigation of anisotropic wetting behavior and theoretical simulations for anisotropic wetting are also further reviewed. Perspectives concerning future direction of anisotropic wetting research and its potential applications in microfluidic devices, lab-on-a-chip, sensor, microreactor and self-cleaning are presented.


Assuntos
Nanotecnologia/métodos , Molhabilidade , Animais , Anisotropia , Produtos Biológicos/química , Modelos Teóricos
7.
Adv Mater ; 23(2): 147-79, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-20976672

RESUMO

Interferometric lithography (IL) is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium, such as a photoresist, that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with IL are a platform for further fabrication of nanostructures and growth of functional materials and are building blocks for devices. This article provides a brief review of IL technologies and focuses on various applications for nanostructures and functional materials based on IL including directed self-assembly of colloidal nanoparticles, nanophotonics, semiconductor materials growth, and nanofluidic devices. Perspectives on future directions for IL and emerging applications in other fields are presented.


Assuntos
Interferometria/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Impressão/métodos , Humanos , Técnicas Analíticas Microfluídicas , Nanotecnologia/instrumentação , Óptica e Fotônica
8.
Langmuir ; 26(4): 2700-6, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20085338

RESUMO

The use of simple plasma treatments and polymer deposition to tailor the anisotropic wetting properties of one-dimensional (1D) submicrometer-scale grooved surfaces, fabricated using interferometric lithography in photoresist polymer films, is reported. Strongly anisotropic wetting phenomena are observed for as-prepared 1D grooved surfaces for both positive and negative photoresists. Low-pressure plasma treatments with different gas compositions (e.g., CHF(3), CF(4), O(2)) are employed to tailor the anisotropic wetting properties from strongly anisotropic and hydrophobic to hydrophobic with very high contact angle and superhydrophilic with a smaller degree of wetting anisotropy and without changing the structural anisotropy. The change of the surface wetting properties for these 1D patterned surfaces is attributed to a change in surface chemical composition, monitored using XPS. In addition, the initial anisotropic wetting properties on 1D patterned samples could be modified by coating plasma treated samples with a thin layer of polymer. We also demonstrated that the wetting properties of 1D grooved surfaces in a Si substrate could be tuned with similar plasma treatments. The ability to tailor anisotropic wetting on 1D patterned surfaces will find many applications in microfluidic devices, lab-on-a-chip systems, microreactors, and self-cleaning surfaces.


Assuntos
Polímeros/química , Anisotropia , Membranas Artificiais , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
9.
Nano Lett ; 8(9): 2819-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18680349

RESUMO

This communication reports strongly anisotropic wetting behavior on one-dimensional nanopatterned surfaces. Contact angles, degree of anisotropy, and droplet distortion are measured on micro- and nanopatterned surfaces fabricated with interference lithography. Both the degree of anisotropy and the droplet distortion are extremely high as compared with previous reports because of the well-defined nanostructural morphology. The surface is manipulated to tune with the wetting from hydrophobic to hydrophilic while retaining the structural wetting anisotropy with a simple silica nanoparticle overcoat. The wetting mechanisms are discussed. Potential applications in microfluidic devices and evaporation-induced pattern formation are demonstrated.

10.
Nano Lett ; 8(6): 1610-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18459743

RESUMO

We report a simple approach to the formation of 3D colloidal nanoparticle structures incorporating enclosed mesoscopic structures through a simple process of spin-coating-driven directed self-assembly onto lithographically defined polymer templates. Removal of the buried polymer patterns by high temperature calcination results in the formation of hierarchically enclosed channels, continuous networks, isolated cavities, and multilayered structures with high stability and environmental resistance. These channels are used to investigate the transport of DNA molecules in constrained geometries.


Assuntos
Coloides/química , DNA/química , DNA/ultraestrutura , Microfluídica/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Difusão , Movimento (Física)
11.
Langmuir ; 23(10): 5377-85, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17425349

RESUMO

This article reports a simple, versatile approach to the fabrication of lithographically defined mesoscopic colloidal silica nanoparticle patterns over large areas using spin-coating, interferometric lithography, and reactive-ion etching. One-dimensional nanoparticle films (bands) and 2D discs, diamonds, and holes with sub-micrometer periodicity, high quality, and excellent uniformity were successfully fabricated over large areas. The well-defined shape and period of the patterned nanoparticle film were controlled in the interferometric lithography step, while the thickness of nanoparticle film was easily tuned in the spin-coating step. This approach can extend to other deposition methods such as convective self-assembly, electrostatic self-assembly, and other materials such as metallic and ferromagnetic nanoparticles. We have also been able to generate sparse, random, isolated particle patterns, using a combination of interferometric lithography and layer-by-layer deposition as an extension of this approach to another deposition method, and to generate disc nanoparticle patterns using colloidal lithography as an extension of this approach to another lithography technique. These patterned films will find important applications in the fields of material growth, biosensors, and catalysis, as well as serving as building blocks for further fabrication.


Assuntos
Nanopartículas , Dióxido de Silício , Eletricidade Estática
12.
Inorg Chem ; 43(5): 1594-6, 2004 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-14989648

RESUMO

A new example of tubular materials based on sodium rare-earth tetrafluorides, NaHoF(4) and NaSmF(4), has been fabricated by a simple hydrothermal method. In addition, an unusual nanotube with a perfect couple of an outer prismatic shell with an inner concentric prismatic nanorod at the center is found. According to the architectures of various products, the general growth mechanism of these tubes is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...