Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37242052

RESUMO

Tunable and low-power microcavities are essential for large-scale photonic integrated circuits. Thermal tuning, a convenient and stable tuning method, has been widely adopted in optical neural networks and quantum information processing. Recently, graphene thermal tuning has been demonstrated to be a power-efficient technique, as it does not require thick spacers to prevent light absorption. In this paper, a silicon-based on-chip Fano resonator with graphene nanoheaters is proposed and fabricated. This novel Fano structure is achieved by introducing a scattering block, and it can be easily fabricated in large quantities. Experimental results demonstrate that the resonator has the characteristics of a high quality factor (∼31,000) and low state-switching power (∼1 mW). The temporal responses of the microcavity exhibit qualified modulation speed with 9.8 µs rise time and 16.6 µs fall time. The thermal imaging and Raman spectroscopy of graphene at different biases were also measured to intuitively show that the tuning is derived from the joule heating effect of graphene. This work provides an alternative for future large-scale tunable and low-power-consumption optical networks, and has potential applications in optical filters and switches.

2.
Opt Express ; 29(22): 36038-36047, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34809024

RESUMO

We propose and theoretically study a tunable frequency matching method for four-wave-mixing Bragg-scattering frequency conversion in microring resonators. A tunable coupling between the clockwise and counterclockwise propagating modes in the resonators was designed to introduce adjustable mode splitting, thus compensating for the frequency mismatching under different wavelengths. Using a silicon nitride ring resonator as an example, we showed that the tuning bandwidth approaches 35 number of FSRs. Numerical simulations further revealed that the phase-matching strategy is valid under different wavelength combinations and is robust to variations in waveguide geometry and fabrication. These results suggest promising applications in high-efficiency frequency conversion, integrated nonlinear photonics, and quantum optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...