Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; : fj201800060RR, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897813

RESUMO

Increasing evidence has confirmed that nigral iron accumulation and activation of NMDA receptors (NRs) contribute to the neurodegeneration of dopamine (DA) neurons in Parkinson's disease (PD). Earlier work indicated that activation of NRs participated in iron metabolism in the hippocampus. However, the relationship between activation of NRs and iron accumulation in DA neurons of the substantia nigra in PD was unknown. In this study, our results showed that NRs inhibitors MK-801 and AP5 protected nigrostriatal projection system and reduced nigral iron levels of 6-hydroxydopamine (6-OHDA)-induced PD rats. In vitro studies demonstrated that NMDA treatment increased the expression of iron importer divalent metal transporter 1 (DMT1) and decreased the expression of iron exporter ferropotin 1 (Fpn1), which were dependent on iron regulatory protein 1 (IRP1). This led to increased intracellular iron levels and intensified the decrease in mitochondrial transmembrane potential in MES23.5 dopaminergic neurons. In addition, we reported that MK801 and neuronal nitric oxide synthase inhibitor could antagonize 6-OHDA-induced up-regulation of IRP1 and DMT1 and down-regulation of Fpn1, thus attenuating 6-OHDA-induced iron accumulation in MES23.5 cells. This suggested that 6-OHDA-induced activation of NRs might modulate the expression of DMT1 and Fpn1 via the neuronal nitric oxide synthase-IRP1 pathway.-Xu, H., Liu, X., Xia, J., Yu, T., Qu, Y., Jiang, H., Xie, J., Activation of NMDA receptors mediated iron accumulation via modulating iron transporters in Parkinson's disease.

2.
Stem Cells Int ; 2018: 2398521, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765407

RESUMO

Spinal cord injury (SCI) is one of serious traumatic diseases of the central nervous system and has no effective treatment because of its complicated pathophysiology. Tissue engineering strategy which contains scaffolds, cells, and growth factors can provide a promising treatment for SCI. Hydrogel that has 3D network structure and biomimetic microenvironment can support cellular growth and embed biological macromolecules for sustaining release. Dental pulp stem cells (DPSCs), derived from cranial neural crest, possess mesenchymal stem cell (MSC) characteristics and have an ability to provide neuroprotective and neurotrophic properties for SCI treatment. Basic fibroblast growth factor (bFGF) is able to promote cell survival and proliferation and also has beneficial effect on neural regeneration and functional recovery after SCI. Herein, a thermosensitive heparin-poloxamer (HP) hydrogel containing DPSCs and bFGF was prepared, and the effects of HP-bFGF-DPSCs on neuron restoration after SCI were evaluated by functional recovery tests, western blotting, magnetic resonance imaging (MRI), histology evaluation, and immunohistochemistry. The results suggested that transplanted HP hydrogel containing DPSCs and bFGF had a significant impact on spinal cord repair and regeneration and may provide a promising strategy for neuron repair, functional recovery, and tissue regeneration after SCI.

3.
Neurosci Lett ; 595: 99-103, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25863172

RESUMO

Impaired brain iron homeostasis has been considered as an important mechanism in Parkinson's diseases (PD). There are indications that C282Y and H63D polymorphisms of HFE genes involved in iron metabolism might contribute to the pathogenesis of PD in some cases. However, the investigation of the relationship between PD and the two polymorphisms had produced contradictory results. We performed a meta-analysis to assess the C282Y and H63D polymorphisms of HFE in PD susceptibility. PubMed, EMBASE and Web of Science were systematically searched to identify relevant researches. The strict selection criteria and exclusion standard were applied. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. A fixed-effect or random-effect model was selected, depending on the results of the heterogeneity test. Fifteen studies were included in the meta-analysis (eight studies with 1631 cases and 4548 controls for C282Y; seven studies with 1192 cases and 4065 controls for H63D). For the C282Y polymorphism, significant associations were observed in the Recessive model (YY vs CY+CC: OR=0.22, 95% CI=0.09-0.57, P=0.002). This indicated that the C282Y polymorphism in HFE might be a potential protective factor for PD. However, no significant associations were found for any genetic model for the H63D polymorphism, suggesting that the H63D polymorphism might not be associated with PD.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Proteínas de Membrana/genética , Doença de Parkinson/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Proteína da Hemocromatose , Humanos , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...