Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38991148

RESUMO

Although metal halide perovskites (MHPs) have demonstrated remarkable external quantum efficiencies (EQEs) in red and green light-emitting diodes (LEDs), the blue ones confront efficiency and stability problems due to the high defect density in the perovskite films. Large amounts of defect passivation strategies are successfully developed to improve the device performance. Nevertheless, the influence of the molecular configuration of the passivators on the perovskite crystallization process has not been comprehensively investigated so far. Here, we investigate the effect of the phenyl ring on the perovskite crystallization dynamics and the passivation effect. The additive with a phenyl ring performs the π-π stacking ability with phenethylammonium (PEA+) molecules, resulting in a deteriorated crystallinity and a weakened passivation ability. Conversely, the additive without the phenyl ring is helpful to promote the participation of PEA+ molecules in the crystalline process, leading to a higher crystallinity and a stronger passivation effect. As a result, the EQE of the blue perovskite LED has increased from 4.72 to 11.06% by using the phenyl ring-free additive. Therefore, it is advisible to develop the conjugated nonplanar additives in the PEA+-assisted quasi-two-dimensional perovskites. This finding may enlighten the rational design of defect passivators for highly efficient perovskite LEDs.

2.
Sci Bull (Beijing) ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38972807

RESUMO

Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskite solar cells (PSCs) using the one-step spin-coating method. Here, we strategically employed sparingly soluble germanium iodide as a homogenized bulk in-situ reconstruction inducing material preferentially aggregated at the perovskite buried interface with gradient doping, markedly reducing deep-level traps and withstanding local lattice strain, while minimizing non-radiative recombination losses and enhancing the charge carrier lifetime over 9 µs. Furthermore, this gradient doping assisted in modifying the band diagram at the buried interface into a desirable flattened alignment, substantially mitigating the energy loss of charge carriers within perovskite films and improving the carrier extraction equilibrium. As a result, the optimized device achieved a champion power conversion efficiency of 25.24% with a fill factor of up to 84.65%, and the unencapsulated device also demonstrated excellent light stability and humidity stability. This work provides a straightforward and reliable homogenization strategy of perovskite components for obtaining efficient and stable PSCs.

3.
ACS Nano ; 18(23): 15055-15066, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38825792

RESUMO

The stability issue of Sn-based perovskite solar cells (PSCs) is expected to be resolved by involving a two-dimensional (2D) layered structure. However, Sn-based 2D PSCs, especially Dion-Jacobson (DJ)-phase ones with potentially good stability, have rarely been reported. Herein, superior DJ-phase Sn 2D perovskites with 3-aminobenzylamine (3ABA2+) or 4-aminobenzylamine (4ABA2+) π-conjugated short-chain ligands are reported to fabricate efficient 2D lead-free PSCs. Notably, the high dipole moment of the 3ABAI2 organic spacer is approved to possess faster charge transfer for forming (3ABA)FA4Sn5I16 2D perovskite with an extremely low exciton binding energy (only 84 meV). In combination with a diacetate partial substitution and methylamine iodide/bromide (MAI/MABr) post-treatment strategy to delay crystallization and improve compactness and coverage of the perovskite film, a record power conversion efficiency (PCE) of 6.81% and stability of 840 h (less than 5% degradation in a N2 atmosphere for unencapsulated devices) are acquired in eventual (3ABA)FA4Sn5I16 2D PSCs, which are among the highest PCE and the longest stability of Sn-based 2D PSCs reported to date. Our work provides a prospective molecule design and film preparation strategy of 2D Sn perovskites toward nontoxic high-performance tin-based PSCs, which pushes the almost stagnant research forward.

4.
ACS Appl Mater Interfaces ; 16(25): 32240-32248, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38877977

RESUMO

Sn-based perovskite solar cells (Sn-PSCs) have received increasing attention due to their nontoxicity and potentially high efficiency. However, the poor stability of Sn2+ ions remains a major problem in achieving stable and efficient Sn-PSCs. Herein, an in situ polymerization strategy using allyl thiourea and ethylene glycol dimethacrylate as cross-linking agents in the Sn-based perovskite precursor is proposed to improve the device performance of Sn-PSCs. The C═S and N-H bonds of the cross-linkers are able to coordinate with SnI2 and inhibit the oxidation of Sn2+, thereby reducing defect density and improving the stability of Sn-based perovskite films. The high quality of the perovskite film induced by the in situ polymerization strategy delivers an improved power conversion efficiency (PCE) from 7.50 to 9.22%. More importantly, the unpackaged device with cross-linkers maintained more than 70% of the initial PCE after 150 h of AM 1.5G light soaking in a nitrogen atmosphere and 80% of the initial PCE after 1800 h in dark conditions. This work demonstrates that the in situ polymerization strategy is an effective method to enhance the stability of Sn-based perovskite films and devices.

5.
Adv Mater ; : e2405684, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769911

RESUMO

Two-terminal (2T) perovskite-based tandem solar cells (TSCs) arouse burgeoning interest in breaking the Shockley-Queisser (S-Q) limit of single-junction solar cells by combining two subcells with different bandgaps. However, the highest certified efficiency of 2T perovskite-based TSCs (33.9%) lags behind the theoretical limit (42-43%). A vital challenge limiting the development of 2T perovskite-based TSCs is the transparent recombination layers/interconnecting layers (RLs) design between two subcells. To improve the performance of 2T perovskite-based TSCs, RLs simultaneously fulfill the optical loss, contact resistance, carrier mobility, stress management, and conformal coverage requirements. In this review, the definition, functions, and requirements of RLs in 2T perovskite-based TSCs are presented. The insightful characterization methods applicable to RLs, which are inspiring for further research on the RLs both in 2T perovskite-based two-junction and multi-junction TSCs, are also highlighted. Finally, the key factors that currently limit the performance enhancement of RLs and the future directions that should be continuously focused on are summarized.

6.
Small Methods ; 8(2): e2300428, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37328447

RESUMO

Inverted perovskite solar cells (PSCs) are a promising technology for commercialization due to their reliable operation and scalable fabrication. However, in inverted PSCs, depositing a high-quality perovskite layer comparable to those realized in normal structures still presents some challenges. Defects at grain boundaries and interfaces between the active layer and carrier extraction layer seriously hinder the power conversion efficiency (PCE) and stability of these cells. In this work, it is shown that synergistic bulk doping and surface treatment of triple-cation mixed-halide perovskites with phenylpropylammonium bromine (PPABr) can improve the efficiency and stability of inverted PSCs. The PPABr ligand is effective in eliminating halide vacancy defects and uncoordinated Pb2+ ions at both grain boundaries and interfaces. In addition, a 2D Ruddlesden-Popper (2D-RP) perovskite capping layer is formed on the surface of 3D perovskite by using PPABr post-treatment. This 2D-RP perovskite capping layer possesses a concentrated phase distribution ≈n = 2. This capping layer not only reduces interfacial non-radiative recombination loss and improves carrier extraction ability but also promotes stability and efficiency. As a result, the inverted PSCs achieve a champion PCE of over 23%, with an open-circuit voltage as high as 1.15 V and a fill factor of over 83%.

7.
Adv Sci (Weinh) ; 10(35): e2304733, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37828594

RESUMO

Flexible perovskite solar cells (f-PSCs) as a promising power source have grabbed surging attention from academia and industry specialists by integrating with different wearable and portable electronics. With the development of low-temperature solution preparation technology and the application of different engineering strategies, the power conversion efficiency of f-PSCs has approached 24%. Due to the inherent properties and application scenarios of f-PSCs, the study of strain in these devices is recognized as one of the key factors in obtaining ideal devices and promoting commercialization. The strains mainly from the change of bond and lattice volume can promote phase transformation, induce decomposition of perovskite film, decrease mechanical stability, etc. However, the effect of strain on the performance of f-PSCs has not been systematically summarized yet. Herein, the sources of strain, evaluation methods, impacts on f-PSCs, and the engineering strategies to modulate strain are summarized. Furthermore, the problems and future challenges in this regard are raised, and solutions and outlooks are offered. This review is dedicated to summarizing and enhancing the research into the strain of f-PSCs to provide some new insights that can further improve the optoelectronic performance and stability of flexible devices.

8.
Adv Sci (Weinh) ; 10(18): e2300056, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088801

RESUMO

Formamidinium lead triiodide (α-FAPbI3 ) has been widely used in high-efficiency perovskite solar cells due to its small band gap and excellent charge-transport properties. Recently, some additives show facet selectivity to generate a (001) facet-dominant film during crystallization. However, the mechanism to realize such (001) facet selectivity is not fully understood. Here, the authors attempted to use three ammonia salts NH4 X (X are pseudohalide anions) to achieve better (001) facet selectivity in perovskite crystallization and improved crystallinity. After addition, the (001) facet dominance is generally increased with the best effect from SCN- anions. The theoretical calculation revealed three mechanisms of such improvements. First, pseudohalide anions have larger binding energy than the iodine ion to bind the facets including (110), (210), and (111), slowing down the growth of these facets. The large binding energy also reduces nucleation density and improves crystallinity. Second, pseudohalide ions improve phase purity by increasing the formation energies of the δ-phase and other hexagonal polytypes, retarding the α- to δ-phase transition. Third, the strong binding of these anions can also effectively passivate the iodine vacancies and suppress nonradiative recombination. As a result, the devices show a power conversion efficiency of 24.11% with a Voc of 1.181 V.


Assuntos
Iodo , Óxidos , Compostos de Cálcio , Íons
9.
Adv Mater ; 35(44): e2300383, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36906920

RESUMO

Metal halide hybrid perovskite solar cells (PSCs) have received considerable attention over the past decade owing to their potential for low-cost, solution-processable, earth-abundant, and high-performance superiority, increasing power conversion efficiencies of up to 25.7%. Solar energy conversion into electricity is highly efficient and sustainable, but direct utilization, storage, and poor energy diversity are difficult to achieve, resulting in a potential waste of resources. Considering its convenience and feasibility, converting solar energy into chemical fuels is regarded as a promising pathway for boosting energy diversity and expanding its utilization. In addition, the energy conversion-storage integrated system can efficiently sequentially capture, convert, and store energy in electrochemical energy storage devices. However, a comprehensive overview focusing on PSC-self-driven integrated devices with a discussion of their development and limitations remains lacking. Here, focus is on the development of representative configurations of emerging PSC-based photo-electrochemical devices including self-charging power packs, unassisted solar water splitting/CO2 reduction. The advanced progresses in this field, including configuration design, key parameters, working principles, integration strategies, electrode materials, and their performance evaluations are also summarized. Finally, scientific challenges and future perspectives for ongoing research in this field are presented.

10.
Adv Mater ; 35(25): e2210176, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36943743

RESUMO

The power conversion efficiency (PCE) of the state-of-the-art large-area slot-die-coated perovskite solar cells (PSCs) is now over 19%, but issues with their stability persist owing to significant intrinsic point defects and a mass of surface imperfections introduced during the fabrication process. Herein, the utilization of a hydrophobic all-organic salt is reported to modify the top surface of large-area slot-die-coated methylammonium (MA)-free halide perovskite layers. Bearing two molecules, each of which is endowed with anchoring groups capable of exhibiting secondary interactions with the perovskite surfaces, the organic salt acts as a molecular lock by effectively binding to both anion and cation vacancies, substantially enhancing the materials' intrinsic stability against different stimuli. It not only reduces the ingression of external species such as oxygen and moisture, but also suppresses the egress of volatile organic components during the thermal stability testing. The treated PSCs demonstrate efficiency of 19.28% (active area of 58.5 cm2 ) and 17.62% (aperture area of 64 cm2 ) for the corresponding mini-module. More importantly, unencapsulated slot-die-coated mini-modules incorporating the all-organic surface modifier show ≈80% efficiency retention after 7500 h (313 days) of storage under 30% relative humidity (RH). They also remarkably retain more than 90% of the initial efficiency for over 850 h while being measured continuously.

11.
Nanomaterials (Basel) ; 12(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234623

RESUMO

Metal halide perovskites have become a research highlight in the optoelectronic field due to their excellent properties. The perovskite light-emitting diodes (PeLEDs) have achieved great improvement in performance in recent years, and the construction of quasi-2D perovskites by incorporating large-size organic cations is an effective strategy for fabricating efficient PeLEDs. Here, we incorporate the fluorine meta-substituted phenethylammonium bromide (m-FPEABr) into CsPbBr3 to prepare quasi-2D perovskite films for efficient PeLEDs, and study the effect of fluorine substitution on regulating the crystallization kinetics and phase distribution of the quasi-2D perovskites. It is found that m-FPEABr allows the transformation of low-n phases to high-n phases during the annealing process, leading to the suppression of n = 1 phase and increasing higher-n phases with improved crystallinity. The rational phase distribution results in the formation of multiple quantum wells (MQWs) in the m-FPEABr based films. The carrier dynamics study reveals that the resultant MQWs enable rapid energy funneling from low-n phases to emission centers. As a result, the green PeLEDs achieve a peak external quantum efficiency of 16.66% at the luminance of 1279 cd m-2. Our study demonstrates that the fluorinated organic cations would provide a facile and effective approach to developing high-performance PeLEDs.

12.
J Phys Chem Lett ; 13(20): 4579-4588, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35583485

RESUMO

Transition metal dichalcogenides (TMDs), two-dimensional (2D) layered Ruddlesden-Popper perovskite material, and their heterojunctions have attracted a great deal of interest in optoelectronic applications. Although various approaches for modulating their properties and applications have been demonstrated, knowledge of the interface band alignment and defect engineering on the TMD/2D perovskite heterojunction is still lacking. Herein, the optoelectronic properties and defect engineering of the WSe2/BA2PbI4 heterojunction have been investigated with density functional theory simulations. We find that the WSe2/BA2PbI4 van der Waals heterojunction maintains an indirect bandgap and S-scheme alignment, facilitating the efficient splitting of light excited carriers across the interface. Importantly, we find that defect engineering could manipulate the band alignment. The introduction of the BA vacancies could switch the interface from the S-scheme to the typical type II interface, whereas Se vacancies would facilitate recombination at the S-scheme interface. Our work proves that the interfacial properties of heterojunctions can be regulated by defect modulation to address different optoelectronic applications.

13.
Small ; 17(43): e2100560, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33817963

RESUMO

Ruddlesden-Popper (RP) metal halide perovskites are considered as promising optoelectronic materials due to their good environmental stability and desirable optoelectronic properties. However, the phase composition and ordering in the deposited film, with a fixed ratio of large organic spacer cation in the precursor solution, are hard to be further tailored for specific optoelectronic applications. Herein, it is shown that even with a fixed spacer cation ratio, the phase composition and ordering can still be largely regulated by utilizing different crystallization kinetics of various cations with the inorganic octahedral lead halide. By using two different short cations to compete with the large spacer cation, the phase composition can be continuously tailored from thin multiple quantum wells (MQWs) dominated to 3D perovskite dominated. The phase ordering can be reversed from small n phases' prior to large n phases' prior near the substrate. Finally, with the same amount of large spacer cation protection, the perovskite can be tailored for both high-performance electroluminescence and photovoltaics with favorable energetic landscape for the corresponding desired first-order excitonic recombination and second-order free electron-hole recombination, respectively. This exploration substantially contributes to the understanding of precise phase engineering in RP perovskite and may provide a new insight into the design of multiple functional devices.

14.
ACS Appl Mater Interfaces ; 12(28): 31863-31874, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32567298

RESUMO

Metal-halide perovskite-based green and red light-emitting diodes (LEDs) have witnessed a rapid development because of their facile synthesis and processability; however, the blue-band emission is constrained by their unstable chemical properties and poorly conducting emitting layers. Here, we show a trioctylphosphine oxide (TOPO)-mediated one-step approach to realize bright deep-blue luminescent FAPbBr3 nanoplatelets (NPLs) with enhanced stability and charge transport. The concentration of NPL surface ligands is shown to be progressively tuned via varying the amount of intermediate TOPO due to the acid-base equilibrium between protic acid and TOPO. By effectively optimizing the concentration of surface ligands, the structural integrity of NPL solids can be preserved in ambient air for a week, mainly because of the highly ordered and dense solid assembly and the reduced defects. The removal of excess organic ligands also enables the improvement of charge mobility by orders of magnitude. Ultimately, ultrapure deep-blue perovskite LEDs (439 nm) with a narrow emission width of 14 nm and a peak EQE of 0.14% are achieved at low driving voltage. Our finding expands the current understanding of surface ligand modulation in the development of pure bromide deep-blue perovskite optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...