Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0301691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829846

RESUMO

Atrial Fibrillation (AF), a type of heart arrhythmia, becomes more common with aging and is associated with an increased risk of stroke and mortality. In light of the urgent need for effective automated AF monitoring, existing methods often fall short in balancing accuracy and computational efficiency. To address this issue, we introduce a framework based on Multi-Scale Dilated Convolution (AF-MSDC), aimed at achieving precise predictions with low cost and high efficiency. By integrating Multi-Scale Dilated Convolution (MSDC) modules, our model is capable of extracting features from electrocardiogram (ECG) datasets across various scales, thus achieving an optimal balance between precision and computational savings. We have developed three MSDC modules to construct the AF-MSDC framework and assessed its performance on renowned datasets, including the MIT-BIH Atrial Fibrillation Database and Physionet Challenge 2017. Empirical results unequivocally demonstrate that our technique surpasses existing state-of-the-art (SOTA) methods in the AF detection domain. Specifically, our model, with only a quarter of the parameters of a Residual Network (ResNet), achieved an impressive sensitivity of 99.45%, specificity of 99.64% (on the MIT-BIH AFDB dataset), and an [Formula: see text] score of 85.63% (on the Physionet Challenge 2017 AFDB dataset). This high efficiency makes our model particularly suitable for integration into wearable ECG devices powered by edge computing frameworks. Moreover, this innovative approach offers new possibilities for the early diagnosis of AF in clinical applications, potentially improving patient quality of life and reducing healthcare costs.


Assuntos
Fibrilação Atrial , Eletrocardiografia , Redes Neurais de Computação , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Humanos , Eletrocardiografia/métodos , Algoritmos , Bases de Dados Factuais
2.
Front Hum Neurosci ; 17: 1280241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034069

RESUMO

Emotion recognition constitutes a pivotal research topic within affective computing, owing to its potential applications across various domains. Currently, emotion recognition methods based on deep learning frameworks utilizing electroencephalogram (EEG) signals have demonstrated effective application and achieved impressive performance. However, in EEG-based emotion recognition, there exists a significant performance drop in cross-subject EEG Emotion recognition due to inter-individual differences among subjects. In order to address this challenge, a hybrid transfer learning strategy is proposed, and the Domain Adaptation with a Few-shot Fine-tuning Network (DFF-Net) is designed for cross-subject EEG emotion recognition. The first step involves the design of a domain adaptive learning module specialized for EEG emotion recognition, known as the Emo-DA module. Following this, the Emo-DA module is utilized to pre-train a model on both the source and target domains. Subsequently, fine-tuning is performed on the target domain specifically for the purpose of cross-subject EEG emotion recognition testing. This comprehensive approach effectively harnesses the attributes of domain adaptation and fine-tuning, resulting in a noteworthy improvement in the accuracy of the model for the challenging task of cross-subject EEG emotion recognition. The proposed DFF-Net surpasses the state-of-the-art methods in the cross-subject EEG emotion recognition task, achieving an average recognition accuracy of 93.37% on the SEED dataset and 82.32% on the SEED-IV dataset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...